
NASA Conference Publication 10110

Second NASA
Formal Methods

Workshop
1992

p,- cO

o_ i 0 •,
N "_ P,j u_
,..4 c_ ,-4 R

t 2:1"-

Z I Z_

Z

O0"

L.)
Lu¢I.
u_Q

uJ vl

0
J

,-_ O C1.
,.-,0

I _J-JP'J

_J
I -.J ""

<_ cx: <C
ZC_Z

rr_
,,t"
oO
N
,-4
0

,,0

Compiled by

Sally C. Johnson

C. Michael Holloway

and Ricky W. Butler
NASA Langley Research Center

Hampton, Virginia

Proceedings of a workshop sponsored by the
National Aeronautics and Space Administration,

Washington, D.C., and held at

Langley Research Center

Hampton, Virginia

August 11-13, 1992

NOVEMBER 1992

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23665-5225

_m

z
E

mr

z_

IL

L

_R

Contents

Introduction ... 3

Workshop Agenda .. 5

A Brief Overview of NASA Langley's Research Program in Formal Methods 9

Welcome and Introduction

by Chuck Meissner, Jr. (NASA Langley Research Center) 23

Why Formal Methods?

by Ricky Butler (NASA Langley Research Center) 27

Tutorial: Design Specification Techniques

by Ben DiVito (ViGYAN) ... 43

Tutorial: Code Verification Techniques

by Michael Holloway (NASA Langley Research Center) 49

The FAA DFCS Handbook Formal Methods Chapter

by John Rushby (SRI International) ... 55

Survey of State-of-Practice: Formal Methods in Industry

by Dan Craigan (ORA Canada) ... 61

Formal Modelisation

by Susan Gerhart (National Science Foundation) 71

Formal Methods Technology Insertion Into FTPP

by Rick Harper (Charles Stark Draper Labs) 75

Formal Methods at IBM Federal Systems

by David Hamilton (IBM Federal Systems) .. 83

Reliable Computing Platform

by Ben DiVito (ViGYAN) ... 89

Clock Synchronization: Verification and Implementation

by Paul Miner (NASA Langley Research Center) 101

NASA's Strategy for Technology Transfer

by Sally Johnson (NASA Langley Research Center) 107

Verification of FTPP Scoreboard and Spectool

by Mark Bickford (Odyssey Research Associates, Inc.) 111

Boeing's Work in Formal Methods

by Dave Fura (The Boeing Company) .. 127

DO-178B and Formal Methods

by George Finelli (NASA Langley Research Center) 133

Introduction to the Boyer-Moore Theorem Prover

by Warren Hunt (Computational Logic, Inc.) 137

Introduction to PVS

by Natarajan Shankar (SRI International) .. 149

Logical Foundations of Computing over the Floating Point Reals

by Richard Platek (Odyssey Research Associates, Inc.) 161

Formal Safety Analysis

by Nancy Leveson (University of California at Irvine) 175

The FM9001

by Warren Hunt (Computational Logic, Inc.) 199

Derivational Techniques for Itardware

by Steve Johnson (Indiana University) ... 215

Results of Workshop Survey ,... 223

List of Attendees .. 237

2

Introduction

This publication contains copies of the material presented at the Second NASA Langley

Formal Methods Workshop held at the NASA Langley Research Center August 11-13, 1992.

The purpose of the workshop was to bring together formal methods researchers and aerospace

industry engineers to investigate new opportunities for applying formal methods to aerospace

problems. The first part of the workshop was tutorial in nature. The second part of the

workshop explored the potentia_ of formal methods to solve current aerospace design and

verification problems. The third part of the workshop involved on-line demonstrations of

state-of-the-art formal verification tools. Finally, a detailed survey was filled in by the

attendees; the results of the survey are compiled in this report.

The workshop was attended by aerospace industry engineers and managers, interested

government representatives from FAA, NSA, NCSC, and DARPA, NASA Langley formal-

methods contractors, university professors, and NASA personnel. A list of attendees is

included in this publication.

3

i

E
!

i

4

Second NASA Langley Formal Methods Workshop

H. J. E. Reid Conference Center

Tuesday, Auoust 11. 1992

7:30 Bus Leaves Radisson Hotel/or Reid Conference Center

8:00 - 8:30 Late Reglatmtlon

8:30 - 8:45 Welcome end Introduction

Charles Melssner, Jr., Head, System Validation Methods Branch

5:45 - 9:30 Why Formal Methods?
Ricky Butler, NASA Langley Research Center

9:30 - 10:45 Tutorlah Formal Methods
Ben DiVito, V[GYAN

Michael Holioway, NASA Langley Research Center

10:45 - 11:00 Break

11:00 - 11:30 The FAA DFC$ Handbook m Formal Methods Chapter
John Rushby, SRI International

- 12:30 Survey of State-of-Practice Formal Methods In Industry
Dan Craigan, ORA Canada

11:30

12:30- 1:30 Lunch in NASA Cafeteria

1:30

2:00

2:30

3:00

3:40

4:40

5:00

- 2:00

- 2:30

- 3:00

- 3:40

- 4:40

- 5:00

Formal Modellaatlon

Susan Gerhart, National Science Foundation

Formal Methods TechnOlogy Insertion Into FTPP
Rick Harper, Charles Stark Draper Labs

Break

Formal Methods at 1BMFederal Systems
David Hamilton, IBM Federal Systems

Reliable Computing Platform
Ben DiVito, V[GYAN

Clock Synchronization Verification and Implementation
Paul Miner, NASA Langley Research Center

Bus Leaves Reid Conference Center for Rodisson Hotel

6:30 - 9:00 Workshop Dinner at the Radlsson Hotel

PRECEDING PAGE. BLANK NOT FILMED

Final Agenda - 1

5

NASA Langley Formal Methods Workshop, H. J. E. Reid Conference Center

Wednesdav. Auoust 12. 1992

8:00 Bus LeavesRadissonHotelforReidConferenceCenter

8:30 - 8:45

8:45 - 9:15

9:115 - 9:45

9:45 - 10:00

10:00 - 10:30

10:30 - 11:10

11:10 - 11:50

11:50 - 12:30

NASA's Strategy for Technology Transfer
Sally Johnson, NASA Langley Research Center

Verification of FTPP Scoreboard and Spectool

Mark Bickford, Odyssey Research Associates, Inc.

Boelng'8 Work In Formal Methods _
Dave Fura, The Boeing Company

DO-178B and Formal Methods
George Finelli, NASA Langley Research Center

Break

introduction to the Boyer-Moore Theorem Prover
David Russinoff, Computational Logic, Inc.

Introduction to PVS

Natarajan Shankar, SRi International

Logical Foundations of Computing over the Floating Point Reals
Richard Platek, Odyssey Research Associates, Inc.

12:30

1:30

2:10

2:45

3:00

4:00

5:00

6:00

- 1:30

- 2:10

- 2:45

- 3:00

- 4:00

- 6:00

- 6:00

Lunch In NASA Cafeteria

Formal Safety Analysis
Nancy Leveson, University of California at Irvine

The FMg001

Warren Hunt, Computational Logic, Inc.

Break

Panel: Degree of Mechanization In Formal Methods
Paul Miner, NASA Langley Research Center, Moderator

Nancy Leveson, university of California at Irvine
Richard Piatek, Odyssey Researc_hAss_)ciates, Inc.
John Rushby, SRI International :_ _ - _ _

Exhibits of Formal Methods Tools and Tec-hi_|ques

Cash Bar Social

Bus Leaves Reid Conference Center[or RodL_son Hotel

Final Agenda - 2

6

Thursday, Auoust 13, 1992

- 9:00

8:00

8:3O

9.'00 - 10:00

10:00 - 10:15

10:15 - 11:15

Bus LeavesRadissonHotelforReidConferenceCenter

Derlvatlonal Techniques for Hardware
Steven Johnson, Indiana University

Panel: Issues In Hardware Verification

Wctor Carreno, NASA Langley Research Center. Moderator
Mark Bickford, Odyssey Research Associates, Inc.
Warren Hunt, Computational Logic, Inc.
Steven Johnson, Indiana University
Phi/lip Windley, University of Idaho

Break

Panel: Issues In Design/Code Verification
Michael Holloway, NASA Langley Research Center, Moderator
Ben DiVito, V(GYAN

Damir Jamsek, Odyssey Research Associates, Inc.
Miriam Lesser, Corneli University
John Rushby, SRI International

11:15 - 11:45

11:45 - 12:00

12:00

Formal Methods Survey Completion

Closing Remarks
Ricky Butler, NASA Langley Research Center

Bus Leaves Reid Conference Center for Radisson Hotel

(for those not attending the technical review)

Final Agenda - 3

7

13

N93-12958

A Brief Overview of NASA Langley's

Research Program in Formal Methods

System Validation Methods Branch

NASA Langley Research Center

Hampton, Virginia

September 21, 1992'

Abstract

This paper presents an overview of NASA Langley's research program in formal methods.

The major goal of this work is to bring formal methods technology to a sufficiently mature

level for use by the United States aerospace industry, Towards this goal, work is under-

way to design and formally verify a fault-tolerant computing platform suitable for advanced

flight control applications. Also several direct technology transfer efforts have been initiated

that apply formal methods to critical subsystems of real aerospace computer systems. The

research team consists of six NASA civil servants and contractors from Boeing Military Air-

craft Company, Computational Logic Inc., Odyssey Research Associates, SRI International,

University of California at Davis, and Vigyan Inc.

Motivation

NASA Langley Research Center has been developing techniques for the design and validation

of flight critical systems for over two decades. Although much progress has been made in

developing methods which can accommodate physical failures, the design flaw remains a

serious problem [2, 3, 4, 5, 6, 7, 8].

A recent report by the National Center For Advanced Technologies i has identified "Prov-

ably Correct System Specification" and "Verification Formalism For Error-Free Specifica-

tion" as key areas of research for future avionics software and ultrareliable electronics systems

[9]. Aerospace engineers attending the NASA-LaRC Flight Critical Digital Systems Tech-

nology Workshop [10] listed techniques for the validation of concurrent and fault-tolerant

computer systems high on the list of research priorities for NASA.

*This is an updated version of the a paper entitled "NASA Langley's Research Program in Formal
Methods" presented at COMPASS 91 [1].

1A technical council funded by the Aerospace Industries A,sociation of America (AIA) that represents the
major U.S. aerospace companies engaged in the research, development and manufacture of aircraft, missiles
and space systems and related propulsion, guidance, control and other equipment.

PR_GEDING PAGE. BLANK NOT FILMED
9

A further motivation for the use of formal methods is the practical limitations of life-

testing methods to quantify reliability in the ultrareliable domain. Unfortunately, the quan-

tification of reliability in the presence of design faults has been found to be infeasible whether

applied to hardware or software (standard or fault-tolerant) [11]. Therefore the use of non-

statistical method is necessary.

Formal Methods

Formal methods are the applied mathematics of computer systems engineering. There are

many different types of formal methods with various degrees of rigor. The following is a

useful (first-order) taxonomy of the degrees of rigor in formal methods:

Level-l: Formal specification of all or part of the system.

Level-_: Formal specification at two or more levels of abstraction and paper and

pencil proofs that the detailed specification implies the more abstract spec-

ification.

Level-8: Formal proofs checked by a mechanical theorem prover.

Level I represents the use of mathematical logic or a specification language that has a

formal semantics to specify the system. This can be done at several levels of abstraction.

For example, one level might enumerate the required abstract properties of the system,

while another level describes an implementation Which is algorithmlc in styie? LeVde forma!

methods goes beyond level 1 by developing pencii-and paper proofs that the more C0ncret:e
levels logically imply the more abstract-property 0riented ievel-s. Le-vd _is_e most rigorous

application of formal methods. Here one uses a semi-automatic theorem prover to make sure

that all of the proofs are valid. The Level 3 process of convincin# a mechanical prover i s

really a process of developing an argument for an ultimate skeptic who must be shown every

detail.

It is also important to realize that formal methods is not an all-or-nothing approach.

The application of formal methods to the most critical portions of a system is a pragmatic

and useful strategy. Although a complete formal verification of a large complex systemis

impractical at this time, a great increase in confidence in the system can be obtained by the

use of formal methods at key locations in the system.

Research Team

The Langley formal methods program involves both in-house researchers and industrial/academic

researchers working under contract to NASA Langley. Currently the in-house team consists

of six civil servants and one in-house contractor (Vigyan Inc.). NASA Langley has awarded

three contracts specifically devoted to formal methods (from the competitive NASA RFP

1-22-9130.0238). The selected contractors were SRI International, Computational Logic

Inc., and Odyssey Research Associates. The three contracts are five-year, task assignment

contracts with total spending authority at approximately $2.5M per contract. Another

task-assignment contract with Boeing Military Aircraft Company (BMAC) is being used to

10

explore formal methods as well. Through this contract BMAC is funding research at the

University of California at Davis and California Polytechnic State University to assist them

in the use of formal methods in aerospace applications.

NASA Langley's Research Strategy

The basic strategy of the research effort is to apply existing formal methods to challenging

aerospace designs. This strategy leverages the huge investment of DARPA and National

Security Agency in development of tools and concentrates on the problems specific to the

aerospace problem domain. We have sought = to build a strong inhouse research program

as well as use contracts with the leading U.S. formal methods research teams (i.e. SRI,

CLI, ORA) and aerospace industrial teams (BMAC, Draper Labs). In the short term we

are seeking to apply formal methods to critical subsystems. In the medium term we are

designing and verifying a reliable computing platform. Only in the long-term will we seek to

make production-quality verification tools that are easily used by design engineers without

overly specialized, detailed knowledge of formal methods.

The design of a digital flight control system involves two dissimilar activities:

1. design and implementation of control laws

2. design of the fault-tolerant computing platform which executes the control laws

Although these design activities are intimately connected, they require uniquely different

skills. The first activity requires knowledge of feedback control theory and aerodynamics as

well as numerical methods. The second activity requires knowledge of fault-tolerance theory

and computer architecture. Although both activities are essential, we are concentrating at

this time on the second activity. To facilitate the development and demonstration of tools

and techniques to support the second activity, a reliable computing platform (RCP) is being

developed. Also, several tasks are underway to facilitate the transfer of formal methods

technology to aerospace industry.

The Reliable Computing Platform

The Reliable Computing Platform (RCP) dispatches tile control-law application tasks and

executes them on redundant processors. The reliable computing platform performs the

necessary fault-tolerant functions and provides an interface to the network of sensors and

actuators.

The RCP consists of both hardware and software components. A real-time operating sys-

tem provides the applications software developer with a reliable mechanism for dispatching

periodic tasks on a fault-tolerant computing base that appears to him as a single ultra-

reliable processor. Traditionally, an operating system has been implemented as an ezecutive

(or main program) that invokes subroutines implementing the application tasks. Commu-

nication between the tasks has been accpmplished by use of shared memory. This strategy

is effective for systems with nominal reliability rcquirements where a simplex processor can

11

be used. For ultra-reliable systems, the additional responsibility of providing fault tolerance

makes this approach untenable.

For these reasons, the operating system and replicated computer architecture must be

designed together so they mutually support the goals of the RCP. A multi-level hierarchical

specification of the RCP is shown in figure 1.

Uniprocessor System Model (US)]

IFault-tolerant Replicated Synchronous Model (RS) I

[Fault-tolerant Distributed Synchronous Model (DS) I

I
[ra lt-tolerantDistributed Asynchronous Model (DA}]

I
ILocalE ecutioegodd (LE)I

I
[tIardware/Software Implementation]

Figur e 1: Hierarchical Specification of the Reliable Computing Platform (RCP)

The top level of the hierarchy describes the operating system as a function that sequen-

tiflly invokes applicatio n tasks. This view of the operating system will be referred to as the

uniprocessor specification (US), which is formalized as a state transition system and for-m_

the basis of the specification for the RCP. Fault tolerance is achieved by voting results com-

puted by the replicated processors operating on the same inputs. Interactive consistency

checks on sensor inputs and voting of actuator outputs require synchronization of the repli-

cated processors. The second level in the hierarchy (RS) describes the operating system as

a synchronous system where each replicated processor executes the same application tasks.

The existence of a global time base, an interactive consistency mechanism and a reliable

voting mechanism are assumed at this level. Level 3 of the hierarchy breaks a frame into

four sequential phases. This allows a more explicit modeling of interprocessor communica-

tion and the time phasing of computation, communication, and voting. At the fourth level,

the assumptions of the synchronous model must be discharged. Rushby and yon Henke [12]

report on the formal verification of Lamport and Melliar-Smith's [13] interactive-convergence

ci0ck-synchronization algorithm. This/dg0ridam-can-serve as a foundation for th e i-mplemen--

tatioli-of fhe replicated system by bounding the amount of asynchrony inthe system so that

it can dupi_icate the functionality of the DS model. Dedicated hardware implementations of

the clock synchronization function are a long-term goal. The LE model is currently under

development. Th_is model describes the actions on each local processor delineating how each

processor schedules tasks, votes results and rewrites its own local memory with voted val-

ues. Of primary importance in this specification is the utilization of a memory management

12

unit by the local executive in order to prevent the overwriting of incorrect memory loca-

tions while recovering from the effects of a transient, fault. There will probably be another

level of specification introduced before the final implementation in hardware and software is

reached. The research activity will culminate in a detailed design and prototype implemen-

tation. Figure 2 depicts the generic hardware architecture assumed for implementing the

replicated system. Single-source sensor inputs are distributed by special purpose hardware

executing a Byzantine agreement algorithm. Replicated actuator outputs are all delivered

in parallel to the actuators, where force-sum voting occurs. Interprocessor communication

links allow replicated processors to exchange and vote on the results of task computations.

As previously suggested, clock synchronization hardware may be added to the architecture

as well.

The hardware architecture is a classic N-modular redundant (NMR) system with a small

number N of processors. Single-source sensor inputs are distributed by special purpose

hardware executing a Byzantine agreement algorithm. Replicated actuator outputs are all

delivered in parallel to the actuators, where force-sum voting occurs. Interprocessor com-

munication links allow replicated processors to exchange and vote on the results of task

computations. This is illustrated in figure 2.

Proc(:ss o r

Replicate
I

Sensors I

L
I I

Ilnteraclivc Consislencyl
Distribution Network

Interprocessor
Communication Link

l'n t¢_1"p_'ocessor
(._)rnmunicalion Link

Processor

Replicate
R

L I

l,'igure 2: Generic lmrdware architecture.

The Division of Labor

The in-house team at NASA has been orchesJ4"ating the effort to apply formal methods to

the RCP. The design I)rol)lem has been decomposed into several separate activities, some of

13

which are being investigated by contractual teams and others by the in-house team.

efforts are roughly divided as follows:

in-house:
SRI:

CLI:

ORA:

BMAC:

system architecture, clock synchronization

Clock synchronization, fault-tolerance

Byzantine Agreement Circuits, clock synchronization

Byzantine Agreement Circuits, applications

Hardware Verification, formal requirements analysis

The

NASA In-house Work

The in-house team has concentrated on the system architecture for the RCP. The top two

levels of the RCP were originally formally specified in standard mathematical notation and

connected via mathematical (i.e. level 2 formal methods) proof[14, 15]. Under the assump-

tion that a majority of processors are working in each frame, the proof establishes that the

replicated system computes the same results as a single processor system not subject to fail-

ures. Sufficient conditions were developed that guarantee that the replicated system recovers

from transient faults within a bounded amount of time. SRI subsequently generalized the

models and constructed a mechanical proof in Ehdm [16]. Next, the NASA inhouse team

developed the third and fourth level models. The top two levels and the two new models

were then specified in Ehdm and all of the proofs were done mechanically using the Ehdm

5.2 prover [17, 18]

Inhouse work is underway to design and implement a fault-tolerant clock synchronization

circuit capable of recovery from transient faults [19, 20]. The circuit is being implemented

using programmable logic devices (PLDs) and FOXI fiber optic communications chips [21].

Contractual Efforts

SRI International

The redundancy management strategies of virtually all fault-tolerant systems depend upon

some form of voting which in turn depends upon synchronization. Although in many systems

the clock synchronization function has not been decoupled from the applications (e.g. the

redundant versions of the applications synchronize by messages), research and experience

have led us to believe that solving the synchron!zation problem independently from the ap-

plications design can provide significant simplification of the system [22, 23]. The operating

system is built on top of this clock-synchronization foundation. Of course, the correctness

of this foundation is essential. Thus, the clock synchronization algorithm and its implemen-

tation are prime candidates for formal methods. The verification strategy shown in figure 3

is being explored. The top-level in the hierarchy is an abstract property of the form:

/non-faulty p,q: IG(/) - G(t)l </

where $ is the maximum clock skew guaranteed by the algorithm as long as a sufficient

number of clocks (and the processors they are attached to) are working. The function Cp(t)

R

14

IMaximum Clock Skew Property I
T
I

[Synchronization Algorithm]
T
I

[Digital Circuit ImplementationJ

Figure 3: Hierarchical Verification of Clock Synchronization

gives the value of clock p at real time t. The middle level in the hierarchy is a mathematical

definition of the synchronization algorithm. The bottom level is a detailed digital design of

a circuit that implements the algorithm. The bottom level is sufficiently detailed to make

translation into silicon straight forward.

The verification process involves two important steps: (1) verification that the algorithm

satisfies the maximum skew property and (2) verification that the digital circuitry correctly

implements the algorithm. The first step has already been completed by SRI International.

The first such proof was accomplished during the design and verification of SIFT [13]. The

proof was done by hand in the style of most journal proofs. More recently this proof step

has been mechanically verified using the Ehdm theorem prover [12]. In addition, SRI has

mechanically verified Schneider's clock synchronization paradigm [24] using Ehdm[25]. A

further generalization was found at NASA Langley [20] 2. The design of a digital circuit to

distribute clock values in support of fault-tolerant synchronization has been completed by

SRI International and is currently being formally verified?

SRI is currently writing a chapter for the FAA Digital Systems Validation Handbook

Volume III on formal methods[26]. The handbook provides detailed information about digital

system design and validation and is used by the FAA certifiers.

Computational Logic Inc.

Fault-tolerant systems, although internaJly redundant, must deal with single-source informa-

tion from the external world. For example, a flight control system is built around the notion

of feedback from physical sensors such as accelerometers, position sensors, pressure sensors,

etc. Although these can be replicated (and they usually are), the replicates do not produce

identical results. In order to use bit-by-bit majority voting all of the computational repli-

cates must operate on identical input data. Thus, the sensor values (the complete redundant

suite) must be distributed to each processor in a manner which guarantees that all working

processors receive exactly the same value even in the presence of some faulty processors.

This is the classic Byzantine Generals problem [27]. CLI is investigating the formal verifica-

2The bounded delay assumption was shown to follow from the other assumptions of the theory.
3Unlike the NASA inhouse circuit, the Sttl intent is that the convergence algorithm be implemented in

software.

15

tion of such algorithms and their implementation. They have formally verified the original

Marshall, Shostak, and Lamport version of this algorithm using the Boyer Moore theorem

prover [28]. They have also implemented this algorithm down to the register-transfer level

and demonstrated that it implements the mathematical algorithm [29] and then subsequently

verified the design down to a hardware description language (HDL) developed at CLI [30].

CLI has reproduced the SRI verification of the interactive convergence algorithm using the

Boyer-Moore theorem prover [31]. CLI has also developed a formal model of asynchronous
communication and demonstrated its utility by formally verifying a widely used protocol for

asynchronous communication called the bi-phase mark protocol, also known as "Bi-O-M,"

"FM" or "single density" [32]. It is one of several protocols implemented by microcontrollers
such as the Intel 82530 and is used in the Intel 82C501AD Ethernet Serial Interface.

Odyssey Research Associates

ORA has also been investigating the formal verification of Byzantine Generals algorithrris.

They have focused on the practical implementation of a Byzantine-resilient communications

mechanism between Mini-Cayuga micro-processors [33, 34, 35]. The Mini-Cayuga is a small

but formally verified microprocessor developed by ORA. It is a research prototype and

has not been fabricated. The communications circuitry would serve as a foundation for a

fault-tolerant architecture. It was designed assuming that the underlyi_ag processors were

synchronized (say by a clock synchronization circuit). The issues involved with connecting

the Byzantine communications circuit with a clock synchronization circuit and verifying the

combination - not - _has yet been explored.

Another task that has been startedwith ORA isto apply theirAda verificationtoolsto

aerospace applications. This effortconsistsof two subtasks. The firstsubtask is to verlfy

some utilityroutines obtained from the NASA Goddard Space FlightCenter and the NASA

Lewis Research Center using theirAda VerificationTool named Penelope [36].This subtask

was accomplished in two steps: (I) a formal specificationof the routines and (2) formal

verificationof the routines. Both steps uncovered errorsin the routines [37].The second

subtask was to formally specifythe mode-control panel logicof a Boeing-737 experimental

aircraftsystem using Larch (the specificationlanguage used by Penelope) [38].

A joint project between ORA and Charles Stark Draper Laboratory (CSDL) has been

initiated.The CSDL has been funded by NASA Langley to build fault-tolerantcomputer

systems for over two decades. They have recently become interestedin the use of formal

methods to increase confidence in theirdesigns. ORA has formally specifiedan important

circuit (called the scoreboard) of the Fault-Tolerant Parallel Processor (FTPP) [39] in Cal-

iban [40]. Work is currently underway to formally verify the circuit.

Boeing Military Aircraft Co. ::

The Boeing company has been sponsored by NASA Langley to develop advanced validation

and verification techniques for fly-by-wire systems. As part of the project, Boeing is exploring

the use of formal methods. The goal of this work is two-fold: 1) technology transfer of formal

methods to Boeing, and 2) assessment of formal methods technology maturity.

=

• =
=-

z

16

NASA Langley has been involved in a cooperative research partnership with Boeing to

facilitate the acceptance and adoption of this high-risk, high-payoff technology by Boeing.

The first step was to demonstrate that formal verification of "real" hardware devices is, in

fact, feasible. The first Boeing tasks concentrated on applying the HOL hardware verification

methodology to a set of hardware devices. With the assistance of a subcontract with U. C.

Davis, Boeing verified a set of hardware devices, including a microprocessor[41], a floating-

point coprocesBor similar to the Inte18087 but smaller[42, 43], a direct memory access (DMA)

controller similar to the Intel 8237A but smaller[44], and a set of memory-management

units[45, 46]. U. C. Davis also developed the generic-interpreter theory to aid in the formal

specification and verification of hardware devices[47, 48, 49], and a horizontal-integration

theory for composing verified devices into a system[50, 51, 52, 53].

After demonstrating the feasibility of verifying standard hardware devices, Boeing was

ready to apply the methodology to a set of proprietary hardware devices being developed

inhouse for use in a number of aeronautics and space applications. NASA sponsored a Boeing

engineer to work with the Processor Interface Unit (PIU) design team to formally specify

and verify the device. Although the NASA contract with Boeing will end in FY93, Boeing

has already capitalized on the NASA program and has started their own IR&D effort to

continue applying formal methods to the set of devices.

The cooperative research effort with Boeing has helped NASA Langley to assess the

maturity of formal methods technology with respect to state-of-the-practice digital fiight-

control systems. First, Boeing was tasked to analyze the suitability of the VIPER chip for

application to digital flight controls and to assess the design/verification methodology used

on the VIPER[54] 4. The generic-interpreter and horizontal-integration theories developed at

U. C. Davis provide models to guide the specification and verification of hardware devices.

Application of formal methods to the PIU has demonstrated that formal methods can be

practically applied to the digital hardware devices being developed by Boeing today and has

given NASA insight on how to make the process more cost effective.

Work is also progressing on a methodology for formal requirements analysis for aircraft

systems[58, 59]. This work, being performed under a subcontract to California Polytechnic

State University, includes development of a Wide-Spectrum Requirements Specification Lan-

guage (WSRSL) and prototype tools to support the language. A set of requirements for an

Advanced Subsonic Civil Transport (ASCT) developed by a Boeing engineer under previous

NASA funding is being rewritten in WSRSL to demonstrate the use of the language and

toolset. Since WSRSL is a formal language, the specification can be formally analyzed for

syntactic correctness, completeness, and consistency. NASA Langley is currently evaluat-

ing WSRSL as a candidate requirements specification tool for the fly-by-light/power-by-wire

project. Future plans include possible development of an automatic translator to Ehdm (SRI

International's theorem prover) to facilitate verification of functional correctness as well.

4NASA Langley has just completed a 3 year Memorandum of Understanding (MOU) with the U.K.

Royal Signals and Radar Establishment (RSRE) in formal methods. The MOU focused on the VIPER
microprocessor and the verification methodology used in its development. Computational Logic Inc. and

Langley inhouse researchers also performed assessments of the VIPER project[55, 56, 57].

17

NASA FM Repository

An anonymous FTP account has been set up at Langley to make the research results readily

available. Formal specifications, research papers, and other useful information will be stored

in machine-readable form. To access this repository, one must issue the following command:

"ftp airl6.1arc.nasa.gov". One then supplies "anonymous" as the user name and his FTP

address as the password.

Summary

Although the NASA program covers a wide:spectrum o_ theoretical and practical problem

domains, it is strongly focused on the goal of designing a fault-tolerant reliable computing

base which can support real-time control applications. Much progress has already been made

in applying formal methods to critical subsystems Such as clock synchronization, Byzantine

agreement, voting, etc. The challen-g-e_a-he_d is to integrgte-_ese actlvit]est0 accom-

plish a complete verification of the total RCP system and to continue the transfer of this

technology to the aerospace industry:

[1]

References

Butler, Ricky W.: NASA Langley's Research Program in Formal Methods. In 6th

Annual Conference on Computer Assurance (COMPASS 9I), Gaithershurg, MD, June

1991. : "

[2] Leveson, Nancy G.: Software Safety: What, Why, and How. Computing Surveys,

vol. 18, no. 2, June 1986.

[3] Neumann, Peter G.: Some Computer-Related Disasters and Other Egregious Horrors.

ACM SIGSOFT Software Engineering Notes, vol. 10, no. 1, Jan. 1985, pp. 6-12.

[4] Hamilton, Margaret: Zero-defect softwarc: the elusive goal. IEEE Spectrum, Mar. 1986.

[5] Saab Blames (3ripen Crash on Software. Aviation Week _ Space Technology, Feb. 1989_

[6] Joyce, Ed: Software Bugs: A Matter of Life ant[Liability. Datamation, May 1987.

[7] Garmen, John R.: The Bug Heard 'Round The World. ACM SIGSOFT Software

Engineering Notes, vol. 6, no. 5, Oct. 1981, pp. 3-10.

[8] Rogers, Michael; and Gonzalez, David L.: Can We Trust Our Software? Newsweek,

Jan. i990.

[9] Key Technologies For the Year _000. National Center for Advanced Technologies, 1250

Eye Street N.W., Washington, D.C. 20005, June 1991.

18

[1o]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Meissner, Charles W., Jr.; Dunham, Janet R.; and (eds.), C. Crim: Proceedings of the
NASA-LaRC Flight-Critical Digital Systems Technology Workshop. NASA Conference

Publication 10028, Apr. 1989.

Butler, Ricky W.; and Finelli, George B.: The Infeasibility of Experimental Quantifi-

cation of Life-Critical Software Reliability. In Proceedings of the ACM SIGSOFT '91

Conference on Software for Critical Systems, New Orleans, Louisiana, Dec. 1991, pp.

66-76.

Rushby, John; and yon Henke, Friedrich: Formal Verification of a Fault-Tolerant Clock

Synchronization Algorithm. NASA Contractor Report 4239, June 1989.

Lamport, Leslie; and Melliar-Smith, P. M.: Synchronizing Clocks in the Presence of

Faults. Journal of the ACM, vol. 32, no. 1, Jan. 1985, pp. 52-78.

Di Vito, Ben L.; Butler, Ricky W.; and Caldwell, James L., II: Formal Design and

Verification of a Reliable Computing Platform For Real-Time Control (Phase 1 Results).

NASA Technical Memorandum 102716, Oct. 1990.

Di Vito, Ben L.; Butler, Ricky W.; and Caldwell, James L.: High Level Design Proof

of a Reliable Computing Platform. In Dependable Computing for Critical Applications

_, Dependable Computing and Fault-Tolerant Systems, pp. 279-306. Springer Verlag,

Wien New York, 1992. Also presented at 2nd IFIP Working Conference on Dependable

Computing for Critical Applications, Tucson, AZ, Feb. 18-20, 1991, pp. 124-136.

Rushby, John: Formal Specification and Verification of a Fault-Masking and Transient-

Recovery Model for Digital Flight-Control Systems. NASA Contractor Report 4384, July

1991.

Butler, Ricky W.; and Di Vito, Ben L.: Formal Design and Verification of a Reli-

able Computing Platform For Real-Time Control (Phase P Results). NASA Technical

Memorandum 104196, Jan. 1992.

Di Vito, Ben L.; and Butler, Ricky W.: Formal Techniques for Synchronized Fault-

Tolerant Systems. In 3rd IFIP Working Conference on Dependable Computing for Crit-

ical Applications, Mondello, Sicily, Italy, Sept. 1992.

Miner, Paul S.: A Verified Design of a Fault-Tolerant Clock Synchronization Circuit:

Preliminary Investigations. NASA Technical Memorandum 107568, Mar. 1992.

Miner, Paul S.: An Extension to Schneider's General Paradigm for Fault-Tolerant Clock

Synchronization. NASA Technical Memorandum 107634, Langley Research Center,

Hampton, VA, 1992. To be published.

Miner, Paul S.; Padilla, Peter A.; and Torres, Wilfredo: A Provably Correct Design of

a Fault-Tolerant Clock Synchronization Circuit. To appear in the 1 lth Digital Avionics

Systems Conference, Seattle, WA., Oct. 1992.

19

[22] Lamport, Leslie: Using Time Instead of Timeout for Fault-Tolerant Distributed Sys-

tems. ACM Transactions on Programming Languages and Systems, vol. 6, no. 2, Apr.

1984, pp. 254-280.

[23] Goldberg, Jack; et al.: Development and Analysis of the Software Implemented Fault-

Tolerance (SIFT) Computer. NASA Contractor Report 172146, 1984.

[24] Schneider, Red B.: Understanding Protocols for Byzantine Clock Synchronization.

Cornell University, Ithaca, NY, Technical Report 87-859, Aug. 1987.

[25] Shankax, Natarajan: Mechanical Verification of a Schematic Byzantine Clock Synchro-

nization Algorithm. NASA Contractor Report 4386, July 1991.

[26] Computer Resource Management, Inc.: In Digital Systems Validation Handbook - vol-

ume III, no. DOT/FAA/CT'88/10. FAA.

[27] Lamport, Leslie; Shostak, Robert; and Pease, Marshall: The Byzantine Generals Prob-

lem. ACM Transactions on Programming Languages and Systems, vol. 4, no. 3, July

1982, pp. 382-401.

[28] Bevier, William R.; and Young, W_qliam D.: Machine Checked Proofs of the Design and

Implementation of a Fault-Tolerant Circuit. NASA Contractor Report 182099, Nov.

1990. _ =

[29] Bevier, William R.; and Young, William D.: The Proof of Correctness Of a Fault-

Tolerant Circuit Design. In Second IFIP Conference on Dependable Computing For

Critical Applications, Tucson, Arizona, Feb. 1991, pp. 107-114.

[30] Moore, J Strother: Mechanically Verified Hardware Implementing an 8-bit Parallel I0

Byzantine Agreement Processor. NASA Contractor Report 189588, Apr. 1992.

[31] Young, William D.: Verifying the Interactive Convergence Clock Synchronization al-

gorithm Using the Boyer-Moore Theorem Prover. to be published as a NASA CR,

1992.

[32] Moore, J Strother: A Formal Model of Asynchronous Communication and Its Use in

Mechanically Verifying a Biphase Mark Protocol. NASA Contractor Report 4433, June

1992. :....

[33] Srivas, Mandayam; and Bickford, Mark: Verification of the FtCayuga Fault-Tolerant

Microprocessor System (Volume 1: A Case Study in Theorem Prover-Based Verifica-

tion). NASA Contractor Report 4381, July 1991.

[34] Bickford, Mark; and Srivas, Mandayam: Verification of the FtCayuga Fault-Tolerant

Microprocessor System (Volume 2: Formal Specification and Correctness Theorems).

NASA Contractor Report 187574, July 1991.

|

--__

m

=

_=

2

20

[35] Srivas, Mandayam; and Bickford, Mark: Verification of a Fault-Tolerant Property of a

Multiprocessor System. in Theorem Provers in Circuit Design: Theory, Practice and

Ezperience, Nijmegen, The Netherlands, June 1992. To appear.

[36] Guaspari, David: Penelope, an Ada Verification System. In Proceedings of Tri-Ada '89,

Pittsburgh, PA, Oct. 1989, pp. 216-224.

[37] Eichenlaub, Carl T.; and Harper, C. Douglas: Using Penelope to Assess the Correctness
of NASA Ada Software: A Demonstration of Formal Methods as a Counterpart to

Testing. To be published as a NASA Contractor Report, 1991.

[38] Guaspari, David: Formally Specifying the Logic of an Automatic Guidance Controller.

In Ada-Europe Conference, Athens, Greece, May 1991.

[39] Harper, Richard E.; Lala, Jay H.; and Deyst, John J.: Fault Tolerant Parallel Pro-

cessor Architecture Overview. In Proceedings of the 18th Symposium on Fault Tolerant

Computing, 1988, pp. 252-257.

[40] Srivas, Mandayam; and Bickford, Mark: Moving Formal Methods Into Practice: Veri-

fying the FTPP Scoreboard: Phase i Results. NASA Contractor Report 189607, May

1992.

[41] Windley, Phil J.; Levitt, Karl; and Cohen, Gerald C.: Formal Proof of the AVM-I

Microprocessor Using the Concept of Generic Interpreters. NASA Contractor Report

187491, Mar. 1991.

[42] Pan, Jing; Levitt, Karl; and Cohen, Gerald C.: Toward a Formal Verification of a

Floating-Point Coprocessor and its Composition with a Central Processing Unit. NASA

Contractor Report 187547, Aug. 1991.

[43] Pan, Jing; and Levitt, Karl: Towards a Formal Specification of the IEEE Floating-Point

Standard with Application to the Verification of Floating-Point Coprocessors. In _4th

Asilomar Conference on Signals, Systems _ Computers, Monterrey, CA., Nov. 1990.

[44] Kalvala, Sara; Levitt, Karl; and Cohen, Gerald C.: Design and Verification of a DMA

Processor. To be published as a NASA Contractor Report, 1992.

[45] Schubert, Thomas; Levitt, Karl; and Cohen, Gerald C.: Formal Verification of a Set of

Memory Management Units. NASA Contractor Report 189566, 1992.

[46] Schubert, Thomas; and Levitt, Karl: Verification of Memory Management Units. In

Second IFIP Conference on Dependable Computing For Critical Applications, Tucson,

Arizona, Feb. 1991, pp. 115-123.

[47] Windley, Phil J.; Levitt, Karl; and Cohen, Gerald C.: The Formal Ve_fication of

Generic Interpreters. NASA Contractor Report 4403, Oct. 1991.

[48] Windley, Phil J.: The Formal Verification of Generic Interpreters. In 28th Desi#n

Automation Conference, San Franciso, CA, June 1991.

21

[54]

[49] Windley, Phil J.: Abstract Hardware. In ACM International Workshop on Formal

Methods in VLSI Design, Miami, FL, Jan. 1991.

[50] Schubert, Thomas; Levitt, Karl; and Cohen, Gerald C.: Formal Mechanization of

Device Interactions With a Process Algebra. to be published as a NASA CR, 1992.

[51] Schubert, Thomas; Levitt, Karl; and Cohen, Gerald C.: Towards Composition of Veri-

fied Hardware Devices. NASA Contractor Report 187504, Nov. 1991.

[52] Pan, Jing; Levitt, Karl; and Schubert, E. Thomas: Toward a Formal Verification of

a Floating-Point Coprocessor and its Composition with a Central Processing Unit. In

A CM International Workshop on Formal Methods in VLSI Design, Miami, FL, Jan.

1991.

[53] Kalvala, Sara; Archer, Myla; and Levitt, Karl: A Methodology for Integrating Hardware

Design and Verification. in ArcM International Workshop on Formal Methods in VLSI

Design, Miami, FL, Jan. 1991.

Levitt, Karl; and et. al.: Formal Verification of a Microcoded VIPER using HOL. to

be published as a NASA CR, 1992.

[55] Brock, Bishop; and Hunt, Jr., Warren A.: Report on the Formal Specification and

Partial Verification of the VIPER Microprocessor. NASA Contractor Rep0rt 187540-;

July 1991.

[56] Carrefio, Victor A.; and Angellatta, Rob K.: A Case Study for the Real-Time Ex-

perimental Evaluation of the VIPER Microprocessor. NASA Technical Memorandum

104098, Sept. 1991.

[57] Butler, _cky W.; and Sjogr_en, Jon_ A.! /Iardware Proofs Using EHDM and the RSRE
Verification Methodology. NASA Technical Memorandum 100669, Dec. 19881 _

: . _ y _ 7

[58] Fisher, Gene; Frincke, Deborah; Wolber, Dave; and Cohen, Gerald C.: Structured

Representation for Requirements and Specifications. NASA Contractor Report 187522,

July 1991.

[59] Frincke, Deborah; Wolber, Dave; Fisher, Gene; and Cohen, Gerald: Requirements

Specfication Language (RSL) and Supporting Tools. to be published as a NASA CR,

1992.

22

Welcome and Introduction

Charles Meissner, Jr.
Head, System Validation Methods Branch

NASA Langley Research Center

23

WELCOME
AND

INTRODUCTION

FORMAL METHODS WORKSHOP

NASA LANGLEY RESEARCH CENTER

AUGUST 11-13, 1992

Charles W. Meissner. Jr.

NASA Langley Research Center

L

NASA ORGANIZATION
VERTICAL CUT TO SVMB

l CODE ANASA ADMINISTRATOR

II.

AERONAUTICSAND SPACE I
TECHI_IOLOGY]

I LANGLEY
RESEARCH

CENTER

FLIGHT I
SYSTEMS

DIRECTORATE

,.._
INFORMATION I

I SYSTEM Ig
VALIDATION II

METHODS

24

LANGLEY FAULT-TOLERANT DIGITAL SYSTEMS
HISTORICAL PERSPECTIVE

CA. 1972 ARCS

CARSRA

SIFT

FTMP

CARE III

LIC SOFTWARE

IAPSA

SURE/ASSIST

CA. 1992 AIPS

F-T SYSTEM DESIGN

RELIABILITY ANALYSIS

F-T COMPUTER

F-T COMPUTER

RELIABILITY

S/W ERROR ANALYSIS

F-T DFCS DESIGN

RELIABILITY ANALYSIS

DISTRIBUTED F-T SYSTEM

ULTRARELIABLE DIGITAL AVIONICS

CONTROL SYSTEMS BECOMING THE PRACTICAL EQUIVALENT OF PRIMARY
STRUCTURE

• U.S. FAR 1309-1 Requires P(fail)<lOgfor statistical compliance

• Reliability can't be estimated to this level

• Experienced engineering and operational judgement used for compliance

FAULT-TOLERANT DIGITAL SYSTEMS ARE NECESSARY FOR PRACTICAL
REALIZATION OF ADVANCED CONTROL

• Analog functionality insufficient for advanced control

• Analog too high in size, weight, power

• Digital system components not adequately reliable - use redundancy to
Increase reliability

25

FORMAL METHODS FOR
FLIGHT-CRITICAL SYSTEMS

• The only scientifically satisfactory approach to aspects of the
digital validation process is through reasoning

Formal methods may become Important sooner than is
commonly supposed in the aerospace community

SVMB has put an emphasis on formal methods

Industry/FAA focus is essential feature of our formal methods
work

i

_ =_

:1

26

Why Formal Methods?

Ricky Butler
System Validation Methods Branch

NASA Langley Research Center

27

_ i _ _, :

28

i !i

! i

J
i '

i

i
29

]

_o

]

i _'° ! _" _ _

]

_E

• •

"_ o

._o - = _

.o_ g

.-_
- _

30

o .

[
1

]
]

¢

i

k_

{.°

"£:

__ _

_,, _

31

32

J

I=

!

,_. ,=

__

_4

|

33

- i,

I _'_<_'._";_! i.;iII+_

34

0
o_

o,m

IJ
a

fl

i
:R

II

vl +.
E _u

| T

v! v_

i
v- ;; __

v _''_' v _r _.

% % % %

H n.

]

t

3S

.j

0

M !

-r r

J

)

iTI

= |, II

.|

_ mlmgm_m

4

.r

b

J

36

L
-_ ___ x

-_ z • _ -_-
I1|

ff
.j

2

I

"" V

II .,..[
%-

v_Z

...r_

, V

Ul III

--,2

/,

!

I

_II _ II

1 ,

II II _J II

pIl

Z

I_ II

= :g

i

i

_. ?. _o._

,_ __ "_._'_ rr_

.|

i _

°_ _I

z_

_L

lJ E

x × _ _

r_

38

i!

i
t=1 l!II

!1
il "H.. II

"i I,i It

"G

0 ",--,..--+
iJ•,_. _ II

<', i_
I:1 x

!]i _--II

<_le x

+:+,!i.-+!
o,

i

/

i !
"l+. II
tt It

T

x I!

39

*It_

I

I w!

o

.I

"_i"_ _

•' i!Ii"_.._ _
• • • D

!

ii

II

"i
I

.|_ _ _

1_ _. =_ _ .

1..__*: •

_ :.

| ,_: -_.

40

I!
oiI

_a

_ o go

o_

_ _ _ ..

J_

il!_._1_.__

_-::':--"

4t

o

r _

0

_,1"i ° ° ° °

E

ii °|

*_!o_1 o _ _ _

_ _i _ _!_
B • • •

42

Design

Tutorial

Specification Techniques

Ben DiVito
ViG_\4.N

43

@

i
• • • • Q • • •

O
0
"..4

II

U
i::

-N

i!i0
• • Q

]

,II
ii

|

'!

=

I=

r_

o

-e.
o

=

44

x)<xX××

XXXX
X×XX

.I
i

N

,.-,_

|:,
.a.

,,,|

i
IIi

I

45

0

@

c_

0%

i
g

I]
I +
O"

i +

'_ :'i.

i 'g g__ _. .

• ._ _ _

+ +'+

N

+; |+ l++mm+

I,, , <+

1++

|

•_ _ _.

• m' _r+

k N

o. + ti+
lit ++1,
_ _ _.. ! _

+ii100'"_ • +I

o

0

|

i°[
-t

II

_J
_2

.+ ._ .| .j
] "
i + + +
" + + I
] +i_ "_°_ .i
._ _ J

+

0 g

+_ ++=
"" ,S _+

IP

+.'_ J +

I_ +."
I_ ++++
_++ .+l
| .++.+o:l
J r

+

46

47

o

8

]

!
's

i. _ _B;..
° !1

< "_'E _ °
II _ II _ • 0 11 11

! . 3. _ o. ii

, ,.-., _ _ u_

.i; _,_.

_ _"-., _ _. _ _.- ,_

- ,L',I

.i n _ n _,

°_[._ ._
! *_ _ .__

._ _ _
<_ • • • • •

i!]
'

= _ _,_ i _
• e ap • 4p •

48

Code

Tutorial

Verification Techniques

C. Michael Holloway
System Validation Methods Branch

NASA Langley Research Center

49

,m
u

0

C

.Q

u 0

b.

• e-

E

u_ h- < -r

0
0

0

0
e-

c

>_

o== o_

_.__ _

E _ e

_ ._ ._

N I *"•= "_g
U C t-

_ "_

_ _o
.___=_ _ _=
== _= _.-_._o .,.= o.., Eo "-_

_ _ <N

,m

e'-

e-
0

.u

IJ
_m

,!

>

0

t-
O

e-

, _j

<
ffl

<
z

0

,u

0

w

E
0
U.

,

_'6 _

E= ,_°

LI.

i__

50

J_
U

tO

U'l
c-
O

o_

e-. to
°_ I,,,,,)

_1 _..
,m

E _
tO e-
X ._
uJ -_

i-
_ w

0
m

o_

.E_o o..o

_ C

8_$o 0m

e- _ ._
u _

iiX _i

0
ffl

M

:"
• __ ._

c
0 U

o ._

0 _

_ ,".,
I_ "

E._g
°_

°_,t-

e-

00

(/1
e-

_- 0

om

m

E u_

X

I1) 0

0
ffl

tt.

N

V

V_ _"

_ n

0 _._ ,_ Vl

AI II VI

Q;

_, _ _ <

._ _ _ vl II

51

ol

1

tO

e"

<

O.

c
0
om,

X

W

1

o w _ £

_ o _ ._ ._o
'_ C ,i

n .r- 0 r

E _ -

z c uJ <:

- T ! _ T T
"_ < < m m m
Q;

F-

O A V!_

+ -I-

0 l_ "_

-a_ ,--" h r't

"(3 < - & <

', _ •,,,., ,,¢ "l"

.-_ -- V _ -- V
-'2

•-- r_ v'l "_

.i

= _ ._ v _,
_' _ _ < Vl .._ v

-- Vl <
0 Vl < _- v _ _-
U c o

, T _" _" v,
c: _ o - _ -
0 < < +

1 VI

U Vl v! .

,- . VI In Vl O
I,u

p.

Vl

<

0

, 0
_U..

%

=_
.y

5%

,/

Vl

g

,'3 II

."2. _

v @ ":

.- _, --i-- a ".,-_

- t
VI

52

U')
U')
(_

0

n

o_
(..

e_

N
o_

(,..

53

ul

L

t_

E

ty

C

u

0
_J

Jm

.o

¢2

"0

0
b/

o'l

"0

O

I

E

e_

gl
I

0

"0

0

o

E

E o

A

0
L

n

E

0

e-

f_
U

°_

e-

.__ c-

o

= _ ,-_

¢. ---

.i
=

54 _

The FAA DFCS Handbook

Formal Methods Chapter

John Rushby
SIII hlterm_tional

55

o
o

_.J e-

.0

4a

E u_

u.

r_

<

(N
0_

<

G
O

C
@o

n,

Q;
a.

<
th

<
Z

e-

n,

t--

_s <

__.o<

_" E _

E
0
U

u

56

o(Y

A

Q;

,8..1 t--

a _

•_ _ .-

0

u

_')
_g g

I- 8 u
• •

0

_ E

,_. ,--

I-

= E

E _

g_

_ O

m U

E •

a_

f13

U

O
e-

E

u.

U3

E

r_

O

_o

_g

E

_J

C
f13

<

_J

C
e-
c2

_C

"O

c-
O

a
U9

@

_0
"O

O

OJ

E

E

m_
u_

.O

u

e-

ft3

c_
x

uJ

"O
e-

_u O

_E
o_

U "O

_g
'
t-- -_
0

._E
g_
_ '-_

•_- _

i,-

_5

_f

e-

e-

e-

E,-,
_ 111

e6
ga

C

o_,

_ U

8_

.-

un o

c

e,.

f-

E

0 _
°--

E

t_

v _
o

_ E

.- _
.___ _ -_

u "l- _ _ _
O O O O O

U

6
in

CO

6

E
e_

I.iJ

e-

E

E
O

e

o--

c-

O :

O

_0

O
r_

o

.o

Ch
_J

c-
O
L_

.__

t'N

g6

g_
lg w

.

'

o

0

e-

E

g.

e-

"0

_E

_ c-

O _

¢0

>_

0
t-

E

E

tO

O

E

"0

0
e'-

E

¢11
e-

U

'O

O
e-
_a

e-

6
0

v

w _

E _

O O O O

_J

q_

F-

E

O

O

t.J

.__ e-

u_

"O

O u

_o

o o

57

e,,-

o
e_

E
o
U

E

u_
"0

,u

U

"0
CZ

>

u')

E

e-"
t_

N @
m >

. = _ _5 ,,, 2
o ,_ ,__

_ m u

_ _ ,_. _ E,-- CZ

. .0 m _- .. 0

_ _ ._E o8

•-° °

• • • •

E

e,-,

E

U
e-

g

0 0 o ._"

<

@

-_ b-o o

,9.0 -_ .5 E

"_, _ 0
-- _ .,3 _.. 0
Q. .--_, 2 g o,.,

°,

_.. ,-
• •

IJ

m
W

e

£

og
_ _ 0

_E _

o

_- E

° _
.0_ __

_ 0

< ,-

_ m

iLl v

e"
e-

>

. _ o
oi:'0

0 .-- @

i? 0 0 0 0

k_t
l)

m
4a

o

E

,ka

@

o

E

E

o
_ 0

O_ r-

r- M:

2 E
--- k._

_ o
_m _.

o
'0 U
OJ

o_
• •

O_ 0

¢-

-_E

_- E _

_ "-

:EN_ _E
e

58

C

U

c

D.

o

,o

>

r=

¢n
C
O
m

('D

O.

o

U
C
Q;
"O

O
U

o
O
"O

o
-I-

r-

t-
O
U

e-

o.

8, _

0 0

m
0 0 0 0

e-

1-

1=

Iz ,<
o o

U

0

1

E

o

i1
0

z

0

n

e-

e-

_1

Q/

e_

C

,_o

o

J=
U

0

.J

"0
0
e-

E

E

0
Z

d

v

m
O

U

O '0

._ m 0

_ '_-
o __

=3 e-

o E

e" t=

.-

"O

Q;

e.-

,N
C= e-

E_
8; r,

t,..
"O

N

e..

O

E

e-

t_

E
o
t_

r-

e-
0

°w

N

J:

U

'o
o
J=

:E

E

LL

0

¢:
Q;

_B

o
C
0
Ol
4_
r'-

4_

Q_

u
o

e..

.o

"0
Q;

¢h

o
:)

E

_m

U

C

°c

,- 0

z _ I1.
• • •

.o_
>

,0 _
_ E
u _

r-

,_l _ _:

._- fl
e-

O u

5g

)

o

C

0

U

O,

U

_J

E
0

U

.x

W
U

E

U

D

E
E

0

E

E

o

U

e

C

z

o w

o

m

o

C U

.

.m_
t_

e-

0
e-

e_
f_
e-

C

)

o _

0 '_

0
u

C=
,i

)

o

?.

)
o

_.m
o

0

0

t-.

--1

U

°-

E

£

ffl U

80

c-
O

u

U

t,-

"o
0

i

E

t-

o-

e_

E
oI

¢,,

h
Q

_ 0

• I1_ t-

ILl =

0

o

_ E

_ E

x _ r_ EQ;

i " °
• @ t

Survey of State-of-Practice

Formal Methods in Industry

Dan Craigan
ORA Canada

61

Overview of Presentation

Survey of State-of-Practice:

Formal Methods in Industry

. Purpose, sponsors and researchers.

• Method for conducting survey.

Dan Craigen

ORA Canada

dan_ora.on.ca

NASA Langley, Virginia

11 August 1992

• Cases: An overview.

• Example case: TCAS.

• Example feature: Tools.

=

• Observations.

Purpose, sponsors and researchers

• To provide an authoritative record on the prac-

tical experience to date.
Purpose, sponsors and researchers

• To better inform industry and government

bodies developing standards and regulations.

• To provide pointers to future research and

technology transfer needs.

• AECB, NIST, NRL.

• Dan Craigen, Susan Gerhart, Ted Ralston.

• Value added: Case studies and anaiysis.

62

Method for Conducting Survey Process

• Initial questionnaire.

• Literature review.

• Structured interviews (Second questionnaire),

I Raw notes, case report, review.

• Review committee.

Method for Conducting Survey

Questionnaires

• Initial questionnaire and structured interview

• Organizational context.

• Project content and history.

• Application goals.

• Formal metl_ods factors.

• Formal methods and tool usage.

• Results.

Method for Conducting Survey

Analytic framework

• Product features.

• Process features.

• FM R&D summary.

• Key events and timing.

Method for Conducting Survey

Product Features

• Client satisfaction.

• Cost.

• lmpact of product.

• Quality.

• Time-to-market.

63

Method for Conducting Survey

Method for Conducting Survey
Process Features

Process Features • Design.

• Cost. • Developing reusable components.

• Impact of process. • Using existing reusable components.

• Pedagogical.

• Tools.

• Maintainability.

• Requirements capture.

• V&V.

IO

Method for Conducting Survey

FM RtzD Summary

• Methods: specification; design and implemen-

tation; validation and verification. [uses]

• Tools: language processors; automated rea-

soning; other tools. [tools]

" • Recommendations to FM community. [needs]

Method for Conducting Survey

Key Events and Timing

• Starter.

• Booster.

• Status.
=

I]

64

12

=

Cases: An Ovetvh'w

• CASE

- SSADM toolset; commercial; Z.

-- 340pgs Z/English; 550 scl_emas;

37KLOC obj. C; 16.5 lino.c,/day

• CICS

- Transaction processing; commercial; Z;

PS/2 tools.

268KLOC new/modified code;

50KLOC traced to Z specs;

9% improvement in cOSt;

60% reduction in APARS.

13

cases: An uvervlew

I Cle_lllrOOll]

COBOl_ structuring and Attitude control;

conlmercial and government;

functional specs, and testing. [Method]

- 80K[_OC; (20KLOC reused; 18KLOC

cllanged; 34KLOC new)

-- 34 lines/day; error rate of 3.4/KLOC

(]/20th industry average).

t Darlington

-- Sllutdown system; regulatory; A-7 style and

progranl function tables.

- SDS1- 1362LOC Fortran; 1185LOC As-

sembler

SDS2:]3KLOC Pascal (??).

14

Cases: An Overview

• LaCoS

- Engine management and a distributed con-

troller; ESPRIT and commercial;

Raise [Method].

• Multinet Gateway

- Network security; NCSC; GVE, etc.

-]Opgs math; 80pgs Gypsy; 6KI.OC OS.

• SACEM

- Automatic train protection system; safety

critical and RER; 13, Hoare triples; [3 tool.

- 9KLOC verified code; Total of 315,000 per-

son hours.

15

65

Cases: An Overview

• I-BACS

- Smartcard security application; security; FDM.

- 300 lines of FDM; 25001ines of C.

• Tektronix (oscilloscope)

- Reusable software architecture', commercial;

Z; Fuzz.

- 200KLOC of code; 15pgs of Z specs (twice).

• TCAS

- CAS Logic and surveillance; regulatory; state

charts with DNF tables.

-?KLOC of pseudocode; specs about the

same size.

16

Cases: An Overview

• Transputer

-T-800 FPU, VCP; commercial; Z, HOL,

mathematics.

- FPU: 100pgs Z; 4KLOC Occam; VCP about

106 states.

Example case: TCAS

• Traffic Alert and Collision Avoidance System.

• TCAS I, IIo III.

• Congressional fiat (1993).

• HP-AIB

- real-time data-base; commercial; HP-SL.

55pgs HP-SL; 1290 lines of Spec and design;

. 4390 lines of code.

17

• Grand Canyon collision.

• Time span from early 80s. Leveson in June

1990.

18

TCAS

• Players: RTCA Inc. (SC 147), FAA, UC lrvine,

Mitre, Lincoln Labs.

• Interview profile:

White.

Leveson, Nivert, Lubkowski,

• CAS Logic and surveillance system.

• 7 KLOC pseudocode.

• 700 pages English description. [Terminated]

• LOSS of intellectual control. _.

19

66

TCAS

• FM for safety analysis. [model checking and

automated deduction]

• Statecharts.

• DNF tables for conditions.

• Iteration on notation.

• Strong support from SC 14Tand industry.

• Currently at IV&V [15 pys over 8 months].

20

Product real tares

Client satisfaction t

Cost n/a

Impact of product n/a
Quality n/a

Time to market I1/;.I

General process fe_|tures

Cost n/a

Impact of process -t-

Pedagogical -l-
Tools n/a

Specific process features

Design +

Developing r. comp. n/a
Reusing r. comp. n/a
Maintainability n/a

Reqts. capture +

V&V n/a

TCAS (Key Events)

• Starter: FAA seeking better rqts. for deployed

and troublesome system; Leveson looking for

demo project.

• Booster: SC 147 willing to accept new ap-

proach; Readable notation.

i

• Status: CAS Logic formalism and pseudocode

in IVV. Surveillance logic current.

?]
22

TCAS (R_f_.D)

TCAS (R&D)
• Tools: LaTeX.

• Uses: Mod. to Statecharts

- Concurrency as parallel state macl_ines.

- -[abular notation.

- Specs. reviewable and IV&V.

- CAS Logic from pseudocode and Englisl_.

• Needs:

- Safety analysis tool.

- Automated deduction and model checking.

- Well-formedness checker.

-- Foundational issues.

• Conclusions: successful transition and applica-

tion.

23

67

24

Tools (Usage) Tools (Usage)

• CASE (SSADM): Prototype Z parser and type-

checker.

• C]CS: PS/2 based toolsuite w/ editor, type-

checker, semantic analyser (Z).

• Cleanroom: Editors, waste paper basket.

• SACEM: B.

• TBACS: FDM, scrolling, pencil and paper X-

ref.

• Tektronix: Fuzz editor, typechecker and pretty

printer.

• Darlington: Microsoft Excel.
• TCAS: LaTeX.

• LaCoS: Raise toolset.
• Transputer: Occam transformation system, in-

house refinement checker.

• Multtnet: GVE, Extractor.
• HP: HP-SL syntax checker.

25 26

TOolS (Needs)
(C _;--: --___ ,.

• CASE (SSADM): schema expander, enhanced

editor, browsing and X-ref.

• ClCS: schema expander, semantic analyzer (for

all Z), configuration management.

• Cleanroom: Extracting and tracking verifica-

tion events.

• Darlington: automated deduction, POG, book-

keeping.

• LaCoS: Experience with automated reas0nlng

tools.

TOOLS (Needs)

• Multinet: Better automated deduction, improve-

ments for industrial scale, soundness, better

notation.

• SACEM: Better integration with other V&V.

• TBACS: Better interface; large expressions and

many proof steps.

27 28

68

Tools (Analysis)

Tools (Needs)

• Tektronix: schema expander, refinement proof

tool, pre-condition calculator.

• TCAS: safety analysis tool, automated deduc-

tion, language checker, soundnesS.

Did the formal methods tools help or

hinder the development of the product?

Were the tools reliable?

CA CI CL DA LA MG SA TB TE TC TB, HP

- + 0 n/a 0 0 + + - n/a + 0

• Not a large role (lack of tool support).

• Transputer: reflnernent clleck('r [c)r large slate

spaces.

• HP: Language checker and belier notation (not

ambitious!).

• Problems due to newness and primitiveness.

• Need for language clleckers, bookkeeping.

• Don't be too ambitious.

2g

• Automated deduction in critical applications.

30

Observations

Feat ures:

Observations

Formal methods

• Definite positive influence on design, require-

ments, V&V, and pedagogical.

• Positive influence on 'impact on process' and

quality.

• Neutral on cost.

• Metl_ods: state machine; 1st-order predicate

calculus; reviewability; complete refinement.

• Tools: Language processors; bookkeeping;

browsing; x- ref.

• Needs: Integration with other V&V; concur-

rency and timing; lower barriers of entry.

31

69

32

Availability of Report

• Availability within 2-3 months.

• Send email to dan(_ora.on.ca, or mail to:

Dan Craigen
ORA Canada

265 Carling Avenue, Suite 506

Ottawa, Ontario K1S 2E1
Canada

33

|

l
|
|

!

=

=

£

7O

Formal Modelisation

Susan Gerhart
National Sciencr Foundation

71

Model|sat|on
Sure you've proved it correct,

but what does the system REALLY do?

Susan L. Gerhart

sgerhart@nsf.gov

Subjects:

The SACEM Case

(continued from Dan Craigen's presentation)-
how FM was embedded in an industrial process

Issues of "modelisation"

Software Engineering for a
"Formal Methodist"

Requirements Mall_emalx:al model of tho system ihat alk.-ws
Wop_ exp_oratlOn

SpecificaliOn"the system" expressod JnmWhum_l
nolalions

Design Operatle_ndecomposi|_o_lsand da|a
refinements

implementationCode * Asse_Ons * AssurnplJons

ValidationSpec, E=ecuaon or prools ol properzms

VerilY.salon |dentil|ca|ion and discharge o/cor,eclnass
obligations

[:_::_r_n_x:x_ Prose and dia_'ams _ go will) the
mathematical nolalion

Lile Cyde Gel lhs specIhG._ionr_t &_l aojeed upon

Background Point o/View

SACee:
Train control for the Paris Metro

The Job:

Shorlen the train inlmvals to 2 minu|es fo avoid a new Paris line
o¢1

_onvincs the Pa.s TransH Authority the systsm was safe

_luJU_up an intemadonaJ;:)usirlesS_ safe train control systems

Who:

GEC _|ra,'CSEE • Pans Transit Autho_

The Process:

f97osDecided had to go with new soltwa_e and
hardware

Explo_sd fault tolerance, discovered woof Of correctness lechnk_,
_id safely studies

19BOSbu'lt prolotypes.
vorif_<Jcode onc wF.y.
found new way to specify and v_,,
worked with a!Jthott|;a$ to demonslrata safety,
brouOhl on-llne

ICJ"JOS................. dentonsltated capability on other systems.
commorcializ_,g |oo_s used in theWOCeSS

The Results:

Vuhhcallon was demonstrated as an addilion to simulation, withOul
excess cos! and wdh s_n:he_nl added assurance

Specification and modefisalion maluled and an industn_ process
was defined

72

SACEM System

SafelyCue,I

I t I i i
Tra_.l"k" Tram"B"

I

Challenges:

• Oitforenl kinds o("rollingstock" to detocl,
i)mtoCled and some not

• Vwiations in _ack-beacon technology, tunnels & rivers,

• Getting the train "home" when it's system does lad

• Encoded sin_e-processor (rather than complex sync,h,omznd
mul_.l_ocessor) -- as (_-sale as poss_e

SACEM lessons for Formal Methods

An industrial process has been put in'place that is evolving
toward

UlldecslOod end documented

Measured and predictable

Regarded as cost _lloctive

Tool sopporlud

Pmbal_y co_,_'a_e eoMoO 0055

Many techniques can play together.
(although not in concert yet)

SADT lot gr=p_,cal system decomposition and analysis

FSM (Graphcof) simulator

Haza,d analym

(_e_alional scanarioe (600 el them)

Real-lime design simulalion

PromCyped system

Coda verdicaliOn & spoQftcalmh refinement

Technology Transfer problems could be overcome

A manager understoed and stuck with it

The cuslon_r was oducoled (and did Ihe_r own ihmg)

Prov_g could t_ credibly compromised

ModulisalK)n will l_Ip sy,'dizesize their rosulls

SACEM Background

mainl_ _ ouletmosl gu_ed by des_oj_
VWV refined down vvvv

unbl Ioo deladod

until too SOphistK:aled
•"*_abs_acled up "*"

mmntpn.ed code mnermosl I,ol_n 9 heado, s, ,.)t Ix_

Tolal: 315,000 hours (V&V = 1.5 x Development)

formal proof 32.4%

module lusting 20 I%

_ncflonal lusting 25.9°/,

te-specification 2t 6%

Valldsllon Ellorf I

I
Numb_ el procedures proven formaJJy: I I ! 21 I

Nund;_h"at procedures covered m semi global feels t20 33 I

Number of proceduces reeled selr_ globally 79 67 I

Modellsation

The process of getting all the stakeholders to understand

and agree that the working description conveys the
intended system. Subsumes requirements analysis.
mathematical modeling, etc.

In SACEM,

T,KJcI, it&ins+boaconl, encoded mwoc, ,

SaJe_ p_noplas

The desoriplion nc_aion ill,If

The process _ u_Jng II_ descr_¢km

Problems encountered with modelisation in 8ACEM:

Laborious code desodptlon dilcO_nocfed from '*lhe theorem"

Concurrency c_/l_cu, Io express In lop level nKx_

Ddterenf reprosentallo, n=, dlt(_rant analyses _u used _r
assurance (see _ I1,111

Many kinds oi system yMWI: _ raJwoy swtlcl_ng
• _¢rOI_'OCuSs_ de_Mopef, _m,al vu, Him

Relmemenls were OK. but there was a rx_ Oap {.ow
gene_atedl

Carry-over from Requirements
Analysis

Given a language and tools, how do you express the

requirements and mode/the system.

Translate English and diagrams to sets, logic, etc.
and translate back and forth, but

how do yOU read and cl_ck Ibex?

w4"_aldmg_ammatk: technques _m,lt¢ FMs?

CORE. JSD, GIST. SADT etc. provide:

slaodan:l syelem mpmsental_ons

ways Io gel d_/Im_t v,_,wp,_ils

dommn mode_ng tech_.ques

Software process modeling offers:

GuKIolinus Io4"use

Bas_e for debl COPa_IK_)a/_ _vemual nmlnCS

Opporlurdfios for .'tlu<.Futv+_1,U0 w_lfl le:,,l.l<'J

Basic _O_'DII1C@ Of tll;.In;+Ig++t,.Ibdlly

73

Modelisation Process

Identification

Enlitles

ConstramEs among entities

Opara|iOfls atld their parameters

Representation

Eniities become values of a t_oe

Types must be defined Io consllucl, mod_y, and exam.s fllek"
COfltenls

RP._eSenlatton issues am coraedered, e s. ocdem_l, d_oiic-at k>n,
primitive types, agntbutes

Addi.enal properties ol the data types flora requwemenL_

Operations defined with their parameters

Restnctloes are expressed a_ pre-conditiOClS

its effr_ls are defined in terms Of parameter v_s be|ole
a_et execution

System mvar_rtts are formulated from propetlies that the syldem

ts reo_ed or eKpectod to have

lnverianls are proved by induction:

(And a collection of definitions is built up)

Summary

SACEM Case

"Complete" application of formal methods

Shows us potential for integration of FM into broader

system engineering

Displays interaction of problem domain and fo_afiza_on

Process aspect toadd toFMs as languages S tools

Integration of standard computer science with application
domains

Cha#enge to _endors:

write down your process mode/

and

show how modelisation is performed

74

The limitations of the model are identified, e.g.

Omilled o_oeratlons or data dalails

Im¢_iol darinJltons

Amsuffll:_OtlS about _s operating environmun!
(IP/_tem and users)

Degree of concurrency expressed

Reflab/_ of cornmur_,_fion rnerf_

Perler_. r_, and SeCurity req_remenls It_t mu_ be

me by the m',plementation

A plan for using the model is developed, e.g,

k_ntftying the riskiest or leasl us_erslood pad tot further
an,Idyll ar reF_iemenl

iteration towerd more extensive models

Formal proof of ptopetlJes Of the model

Valk_,at_n. e._ by

Prolotyping from Ihe model

Reviews, Inspections, and O_her peer analyses

Antn'l_tien of We mode_

Scenanos tO s(imulate response from cue[omens

.k

Formal Methods Technology

Into FTPP

Insertion

Rick Harper
Charles Stark Dral,cr Labs

75

Formal Methods Technology
Insertion

into

The Fault Tolerant Parallel
Processor

presented at the

Second NASA Langley Formal Methods
Workshop

11-13 August 1992

presented by

Rick Harper
Advanced Computer Architectures Group
The Charles Stark Draper Laboratory, Inc.

Cambridge, MA 02139

NA ¢=& Fozmil Methods Wor kSJtOp 11-t3 AWUti 1992

J

i' iil
m

i

i | -p

A

I I

lj .
!
l

-T-

!]J" -

NA_K_'-_Orm_ Methods Worked'cop 11-13 August Igg2

i

Formal Methods Technology
Insertion into the FTPP

Objective:

Use formal sppeciftcatlon and verification of
critical FTPP hardware and soP,ware

componentsT_uce t_e incidence of

comm0n-mocTeTra_ures_due 10 specification

and Implementation errors

Formal methods do not help avoid many sources
of common-mode fattures

environmentally-induced faults: EMI,

radiation, heat, water, corrosives, sand (!)

Formal methods are not the only solution to

cbmmon-mode= fau|tavoidance, removal, and
tolerance

Mature componenls, standards compliance,

design automation tools, ruthless per_ecution

of complexity, conservative design practices,
simulation, testing, various CMF

detection/recovery mechanisms

- ;! 3_ _i;_,T_ IS0_----_

76

Fault Tolerant Parallel Processor

(FTPP)

High-throughput high-reliablllty/availabillty

computer for hard real-time applications

Uses many Processing Elements {PEs) in

parallel for high throughput

Uses redundant PEs tor high reliability

Tolerates arbitrary failure manitestatlons

("Byzantine Resilient")

Designed primarily to tolerate uncorrelaled
hardware faults

Programmed in Ada

Fault Tolerant Parallel Processor
(FTPP)

Can trade throughput (parallelism) for

reliability (redundancy) In real-lime

Can be dynaml.Uy reconflgurad to optimize

mission rellablUty and availability

Supports mixed simplex, triplex, and

quadruplex redundancy

Allows heterogeneous processing resources

Parallelism : transparent to programmer

Fault tolerance - transparent to programmer

Current FTPP Applications

"The Army Fault Tolerant Architecture (AFTA)

Program"

Funded by: Army Electronics Integration

Directorate / NASA

Appllcat|on: Helicopter TF/TAJNOE/FCS

"Heterogeneous FTPP"

Funded by: Army Strategic Defense

Command

Application: Battle Management

"Fault Tolerant IMU Processor"

Funded by: a commercial aerospace company

Application: IMU processing

_A_mll UIIhodl Wg_klll_p i 1-13 AulJu _ l/'_2------(
-NA-S'[Forml Methods Wo(klhop _Ull 11)92 G

Cluster 3 (C3) FTPP

Third-generation FTPP

Processing Elements

Support 3 to 40 PEs per cluster

680x0s, 80960s, MIPS R300Os, 1860s, or
DSP32C signal processors

Network Elements

100 Mbil/sec fiber opllc interchannel links

facilitate fault containment end physical
dispersion

Standard bus Interface to Processing
Elements

Software

XDAdaTM-b.ed operating system with
CSDL extensions

FTPP C3 Architecture

NASA F_rn_d Methods WOo'klltOp 11-13 August I1_:1 i
NASA Fomlll Melllocl! Wor-_-_--_------_'_l_l_|

77

Layered View of FTPP

NASA Fo/'f'/_l MOthOd$ Wotk-_t_op 1 t-13 AuguSt 1_

Processing Element:

Formally specified / verified microprocessor can

be used in FTPP

Processors Interface to FTPP over standard bus

(e.g., VMEbus)

Not all processors in FTPP need be formally_: _.
verified

Could use small number of formally verified

processors to form quad or triplex Byzantine

resilient core VG which runs a simple verified
kernel

Core VG responsible for motoring other :

VGs (including CMFs) and resetting offenders

using voted_=eset: capability of NE

Throug_ core V_; not an-[SSUe'.cen get

desired throughput adding higher-throughput

VGs in a heterogeneous parallel processing

configuratlon _ i :: :

All VGs communlcaie-usin_ BRVC . -

78

Components of FTPP Suitable for
Formal Methods Insertion

Processing Element

Network Element

FCR Backplane Bus

VG Synchronization Soflware

Task Scheduling Software

Inler-VG Communication Soflware

FDIR Software

NASA Fot-md_l Met/_dl Workshop 11-13 Augu_l 1992

= : :

Network Ejemeh!_

Executes performance- critT_yza_l_,_

resilience algorithms _:: _ _

Provides BRVC abstraction

Generates vote, FTC,//nk, andother syndromes

Ail components execute specifiableand Wriflable

algorithm_

Bus Interface

Voter / syndrome accumulator

FTC

Global Controller

Scoreboard

Substantial body of related work from formal

methods community Is relevant to these funclions

Network Element Architecture

Vllllm4

__----___.

,I "In
w •

,I '--+-)

.._._=._.__J,__

FCR Backplane Bus

Backplane bus used for PE-NE communlcalion

NE partllloned Into bus-dependent and bus-

Independent sections

Can retrofit NE Io formally specified/verified

backplane bus by modifying bus-dependent

section

Formal model of backplane bus needed

Beckplanes are a common component of

many syslems

A formally specified and verified backplane

could find wide use in critical systems

Powerful building block for ultrareliable syslems:

Formally specified and verified processor

resident on formally specified and verified

backplane bus card

Byzantine Resilient Virtual Circuit
Inter-VG Communication Abstraction

do, ,+wi
.lrs_=lcl

.m

lm,.,.k 1=__

L ' --'..-_

M=ml= I I--- --• .U'+U_I_,.+ -- ----

t--t_. I " -- _,

MIISllgll sent by non-foully mlmbsrl el • lourCt VG ere

corrlmlly delivered 1o Ihs non+feully members of roclp|enls

Non-faulty memberl Ol recipient VOI receive messages In the

order lenl by Ihe non-laulty members of the source VG

Non-Ilutty members of rsciplent VOs receive messages In

Identical order

The lbsoIole limes of arrival of corresponding messages st the

memberl el rsclplenl VGS dtller by a known upper bound

The llr_l belwsen a valid millage transmission roquesl end

RNIISIOI delivery pOliCiSeS a known upper bound l

The BRVC pbstractlon Is supported by the NEs

VG Synchronization

VGs are synchronized upon periodic timer

Interrupts (e.g., at 100 Hz)

Timer interrupts occur '_ithin a bounded skew on

all members of VG

Upon timer Inferrupt a VG performs a

synchronizing act (i.e., message passing using

BRVC)

Send message to self

Await reception

I .m_¢ ,m
IKIG M_mlx'_

I......-'-_-'t

_, __ .

-

--4_,. + , '4-----0 --_ "4-J--_)

79

Rate Group Scheduler

FTPP C3 uses I_-_ preemptive rate group

scheduler

Vmlont of rata-monotonic echecluling optlmixed

iof ll_raflve task suites having hMmoN¢ Itafstion

rMes

THks _rect only M frame boundaries

L_ _ I" I; i' l° I' ,,1: I' I

im , + _'mr . 144 + ml_mm

| I | I I I I I I

FTPP 0S Khedu4el ilp_oprieie tasks at eKh

..e boonc

F.m.o..*_ Ic+,m++,.+.o, sw.<_m;,
] +.s,z,i 4.3.2. w

2 4,3 4,3

4,3.2 4.3.2

14-s I 4 4
IS4 14.3 4.3

...... L4 4

_ _U_lh&_-#_-1 _" "--Ti'.1-=-_fm -'----'-"-1_"

Inter-VG Communication

FTPP tasks communicate using message passing

clueue_aenage 0'3 call places massage onto

outgoing queue to NE

FTPP O5 determines destination VG from task-to-

VG mapping table

OS transmtta message queue to destination VG

using BRVC

Recipient VG'a 05 reade message from NE and

places Into destination task Input message queue

_etrLeve meeesge OS call accesses aPtMOP<tata

task Input queue and degvers message to task

All :chedulina and Inter-VG communication

asserllonl Irl l_deDendent o! YG redundancy

"_i_E'--Imm_ Methodl W_kllholp 1 I-13 Aug_s111112 ll

FDIR

FOIR p_rtltioned kx vMIdatabtilty

Local FDIR runs on each VG

System FDiR runs on deslgnatad VG (e.g.,

lom._ verlltadVO)

Alg_Itm:

Local FDIR

Execuies self iesta

Scrubs RAM (independent of

charactariatlcs of application task suite)

Peciodicxily trt_4Mntts self test resulta to

syst4mt FDtR via "presence message"

8yslem FDIR

Examines contents end syndromes of

presence messages to diagnose senders

F_lure to receive presence message withIn

bounded time Impllel common-mode failure

ol sender

8O

-+ +.......

Many recovery pollcles possible In FTPP

Reduce redundancy level

Reintegrate taulted component

Rept_ Multad Component wilh spare

System FOIR determines epproprtata recovery

ectlon and etiher

Irensmits recovery commands+ _ FDI I_-

localized recovery or

performs global system-level recovery

Must show Ihat system FDIR determines correct

recovery action as s function of diagnosed

component
= _

Mull show _l local or system FDIR correctly

ce_rbs old spe_fled recovery

Heterogeneous Kernels on FTPP

Not all kernels in FTPP need be Identical as

long as they can communicate using BRVC

FTPP can host rate group scheduler on

productlon VGs end small formally varlflad

kernel on formally verlfled VGs

]__oaasln_o throuah BRVC subaumaJ

synchronl,zatlon soJl_Lf_)rmelly verified

kernel would not exDIjr.JU_

synchronization of redundant ,,)lies

The formally verified VG would execute the

system FDIR function

Work in Progress: Scoreboard
Specification and Verification

Currently collaborating with eRA to formally

speclly Scoreboard

Scoreboard Is a crltlcal component of FTPP

Comprises approximately 50% of NE circuitry

Enforces BRVC abslractlon

Business Model:

FM experts working closely with englneerlng

staff having little exposure to formal methods

Separate funding (Draper not specifically

funded to collaborate)

Scoreboard described in VHDL and constructed

using automated synthesis (Synopsys)

VHDL used as common language belween Draper

and eRA

]_,SA F_i_--M_hocls WolkShop 11-13 A.gust t992 2_

Conclusions from Scoreboard
._Specification and Verification

Formalization of Scoreboard requirements

uncovered several specification omissions and

ambiguities

Collaboration would have been closer and Impecl

on design greater If Draper had been specifically

funded to participate

incremental cost on a $2.4M brassboard

development program Is small

Benefit to cost ratio Is very high during the

conceptual study and detailed design phases

Work Planned and Critical Needs

Components similar Io remainder of NE (i.e., FTC,

voter) have been formally specified/verified

Would like to adapt this work to FTPP

Actively seeking FV processor to design into

FTPP

Planning to develop selected subset of RCP

software for FI"PP

Viable processor

Formal subset el VHDL, with nonemply

intersection of synthesizeable and formal subsets

Continued formalization of FTPP NE

Formal model for FCR backplane bus

Formalization of critical OS functionality

Business model for format methods insertion

NASA Fomtal Methods Woqkshop II-t i u_"_'_S)_ 2.t

81

|

£

132

r

Formal Methods at

IBM Federal Systems

David Hamilton
IBM Federal Systenls

PRECEDING PAGE BLAr,IK ROT FILMED

83

Formal Methods

Technology Transfer

Some Lessons Learned

David Hamilton

IBM Federal Sector Corporation

Second NASA Langley Formal Methods Workshop

Aug/92

Introduction and Purpose

• To cover

1. Some IBM Involvement in Formal Methods (FM)
projects

2. A perspective on difficulties of technology transfer
(beyond a single project)

Purpose is not to

- sell the "IBM approach"

- argue against feasibility of FM

Purpose is to

- learn from other FM technology transfer projects

- suggest some possible future directions

A_ t

Contents

Introducfion and Purpole .. t

Nmrlan Mille _ SEW ... 2
C _el,_v'oom ... •

SEOL ..
S|el_v tie V_' f ca(cm ... !

c,cs ... :::::::;o=TOI) (V_r;r;catlen =! E$e)

Olher ProjeCltl and A_lm'oachml 11

tloqe on Ou=l;_ En_phasie ... I_

Summary 13

C o_:tuslw'.= .. t4

Auql_J_ i

Harlan Mills and SEW

Mills led massive software engineering education
program
- Software Engineering Workshop was cornerstone

I 2 w.k course
I Taught to all programmers
I Required to pass final exam

SEW centered on mathematically-based verification
- Functional instead of axiomatic

I model oriented instead of property oriented
I designed to scale up (stepwise refinement)
I easier for programmers to understand

- 2 pieces
1. Deriving program functions

I Trace tables (basically manual symbolic
execution)

I Recurson instead of loop lnvariants
2. Module-oriented

I abstract data types
I constraints/closure on state data (abstract

state machine)

• i

84 _=

Harlan Mllls and SEW ... Cleanroom

• SEW designed to be practical

- relatively informal

- scaled up via abstraction/refinement

- lots of examples and exercises

- final test : pass�fail

• Advocated for all programming, not just critical parts

• no support beyond education

• Named after silicon chip manufacturing environment

• Built on SEW foundation, adding

- Continuous inspections (SEW style verification)

- Statisical testing (MI"rF prediction)

• Advertised through case studies, not classes

- no tools

- no consulting

• General reaction was that it was impractical

- too tedious

- seemed only for toy problems

• Dld not galn widespread use

Demonstration projects using highly skilled

develope_

To demonstrate benefits

To show it can be done, it is practical

• Demonstrations projects were success stories

AujAB 3 A._n 4

Cleanroom ... SEDL

Showcase project was COBOUSF

- Transforms unstructured COBOL into structured
COBOL

- 52,000 SLOCS developed using Cleanroom

- Results

II 740 SLOCS / labor month

II 3.4 errors / KSLOC (before first execution) (70
avg incl. UT)

II no error ever found during operational use

Advocacy of Cleanroom continues

- Widespread use not yet attained

- But there is a lot of interest in Cleanroom

Intended to support SEWlCleanroom verlflcaUon
concepts

Built as an extension to Ada

SEDL compiler generates Ada

Supports design execution
- though SEDL generated code my be inefficient

Includes
- Abstract data types (set, list, map, etc.)
- User defined data models

II model vs. representation
II constraints

- Supports mathematical notation
II (X in CHARACTER : x/= 'Q'}
II exists X in S : P(X) and exists Y in T : P(Y)
II P>I and not (exists Q in 2..P-1 : P ram Q = O)

• Use of SEDL is not widespread

85

.... 7 _ - -7-" --

._ - Z_j •

. • 7.= =_'_ --7 -

: =

=

=

=

Z
=

=

B
I

Other Projects and Approaches Note on Quality Emphasis

Application above the code level

- Development of a "Box Structures" design
language

- Development of a "Box Structures" approach to
requirements

- Results

II SA/SD approach to design most popular new
approach

II Requirements still written in English

Emphasis on SEW concepts

- Concepts generally well accepted

- Loss of rigor reduces mathematical basis

• Software quality has extreme emphasis

Great emphasis on process improvement

Serious attention given to quality goals and
measurement

Quality motivation programs

II awards and recognition

II Manned Flight Awareness program

• There is willingness to work hard and invest for quality

The question is not what or how much but how

- FM is generally perceived as not helping

A._yn 1_ A,_J_ t2

Summary Conclusions

A,WW

Goal was to increase the use of formal mathematical

approaches to software development (beyond a single
project)

1. First through education

2. Then through demonstration projects

3. Then through tool support

4. Then by making methods more practical

5. Finally through direct support (consulting)

There have been successes

- not nearly as widespread as desired

This story Is not unique to FM

- The problem Is with technology transfer, not with
technology

t3

pI_(;c.u_'NG PAGE, _LA_'_iK ;',iO'

Conclusion: Technology Transfer is very hard, even
with
- extensive education

- tools support
- demonstrated successes

Possible future directions

- More consulting ('hand holding') (product
champions)

- Use only a core group (FM may Just not be for
everybody)

- Require use of FM (selected groups)
- Success story close to home

II technology transfer diminishes rapidly as a
function of distance

II long term committment is required (success
story requires continued follow-up)

- Different formal method(s)
- Different toots (e.g., theorem prover)

' _i..iviED

87

14

=i

=

i

138

Reliable Computing Platform

Ben DiVito
ViG'I_N

pREOEDtNG PAGE BLANK PlOT FILMED

89

0

I • • • • 9

1

L

V

• g •

! i o

o

90

91

o,._

,m

&

j • j

!

j

I

M

J

'_ 1

!

8_

• • B B

G

=_

92

J

ii J

ii i
_I_I
l,

.I J

J

._I

g.

J

i

::
m J

}-[]
w

|

m

g3

.|

@.

*s

)

el

's

|]
_ r.. It

i 11i ,

b_

'S

<P

,_ _.'_ :,.
oo,_ =- i

, _ _
' t.._ _ 'j

. _'_ _ _ _

m

_-.

_.J..

- t

.11

Z
|

J
'd

.S

L

J

qP •

o_

g4

i
J

t
J.

l

I'!.i
:_ .|

j-

95

!

!
i

.! t.1
ilI

1

.1

g

'J .I

ii

8 n

_J

Z

cg i

n

..o .1

II

|

i
°i
w II

I°

i'

,1

te

-i

•-_ | i

_ _

_!!.-
r_

|

t

i J li

ii

96

.!

r_

!

.I
,!

I

-o)

I

oI

.!i

It

|

i
m

z

I

J

!il
i !!

1 I!!

tim

r_

_ 97

d
0

,i,q

.|

a _

_ ,
o

.|

g8

.|

_r

-7

T _
_. <

gl _ <:

1t

J_

j _

"_"j i'_ "1+ _-

In u T _

=

i

i

!

|

=

2.

=

z

=

• _'_

i:

t_

N

_ _,,__. ._-__

. -. tl,

t

Z

99

r/)

o

° !
• Q

T

I=
.o

(I,1

• • • 41

k

o

.o

.|

-_ t " _ _'__-_

.,:_= if _ __ ,,: :.¢_'_'-._ _ _ _ :
"_ _ _ ._ _J = II _ =]5.] II II 11

•.=_ ._ c ..8

_ ,.,= _-.,< << ,_"

100

=

=

= .

=

=

=

@

Clock Synchronization

Verification and Implementation

Paul Miner
S),stems \.Llidation Methods Branch

NASA Langley Research Center

- 101

!

i !I

_J

r_

=.

--

L

102

O

0

FT;_;;;:;

i, is

=1!
6,..¢

• w .--

-_ N " °_'_

• -- 0 "_

E_

i,'i C

_ _ .-
_ _. .

'_ _ E _

i

_ N

_i _ __ ,,,,

103

b

Jj,_

t..E -_

.c: O_ _ _

"0 E e o--

0

$

.- _,. _ 8

• • • • • • • •

=
0

_ E

. ¢ _ '._

u _ e-

o __
.-_ , __ _,o__g_

"-- .I= _ _'I

_._o
'*" '_ _- ! ! uJ ,_ _:'_ L_

104

C_

u
0

m

=

106

NASA's Strategy for Technology Transfer

Sally Johnson
Systems Validation Methods Branch

NASA Langley Research Center

PREOEDING PAC._ BLANK t',iOT FILMED

107

NASA'S STRATEGY FOR

TECHNOLOGY TRANSFER

by

Sally C. Johnson

NASA Langley Research Center

GOAL

Technology Transfer to Industry

One o[NASA's major goals is to l)rovide the U.S. aerospace indus-

try with tile tools and techniques they will need to be worhl-class

competitors in tile coming decades.

108

L

"rech**oh)gy 'rralls l'c'r

rxI.g'l'lN(;
I:OI_MAI. M F.'I'I I()l)S INI)I IS'I'RY

TO()I 3 & "rl-('l INI(.)[I1-."; NI,].l).g

SYSTI,'.M I:AA
I)l':.gl(;NI':RS

FORMAl, MI':TII()I)S

"STA'II': ()F TI lit Iq_A('I'ICI-"

W_.'killg wil.h l,l(lli._t, ry

• ih)_i*lg I)ll ! I,;.',lwarl,, v(_rilir;lli(.,

• ih)l,ill_ SVM har_lwar(, v(.'rili('ati_.l

• (LNI)I,/()I{ A Sl'l)l'l_l)lllll'll Ilill'llwlll't_ w_i'ilical, i_Jll

* ()IIA Vi,rilical.iu** o1" A_hl llllliil('_ll, illll ._llfI,W;ll'l_ I'rlllll NASA (lod-

(l;ll'll llllli .h)llllSllll

l"l)l'lllill .I)(;cilic"Lil"l llllll vl,rilic;_li(.I o1" ¢:ill()ll(lllr I,I, ilities

Mo_l(_-(,q.li, rqd I)an_d I._.ic _1" IIo(-'i.t_ 737 eXl_erimeill,al sysl,_,m

Sl)l..cilil_(I i,l I,arcll

. (',lwrt;mll, ly I)lH'silillg I'1_1m'l' I)r_Li_,cl,._

109

Working with tile FAA

• Digital Systems Validation IIandbook Chapter

• Tutorial presentation to SWAT (SoftWare Advisory Teatn)

• Formal specification of GCS application

• RTCA comtnittee DO 17813 standard

110

Verification of FTPP Scoreboard

and Spectool

Mark Bickford
()dyssey 1Research Associa.tes, Inc.

111

I,,0

112

0

t-
O
0

0 0

'_
o

j_ 0
o

U rJ) c

F:
CL J3 _ C

E _ >"" 0
C _ >

',_ _0 .- _ --

(D O)

,,_ j::: ¢) _ t-

Z 0 c _ ._

,IT o o< m (.9 u_ n

n n n _ n o
r-
13_

o-

0

E
c

"I0

r-

fib..

>

El

113

114

J

=

=

0

115

0

0
T-

J

116

@

:>
o o
q_l Clv

c_ o" m "-

,..I o c
E_ _ _ _ o

• o _
c _
0 II .--

• -- C-

•-_ _ ® .c m

•d g m
_ -_ o
t./) ° :] _ I:l

._o _> x<_ ,< c_ 27 w

n n n n

J

T-

O_

J

0_0

i
LU W

z z
rn 11 rn

0 z 0
m m u_"
> _ _ Z

C_ _ 0

,,e-...

0 CI 0 _.. _., 0
_ C_ _ L_o o =5 o

• '_ q) Q-
o c_ c.,_, o E
0 • :>., _])

•,..- ,.,- 70 O- .,-,
0 0 "- _>" "--

-.-. .*-.. :> E
"_- '_ - I--o o _ c "_
•_, '_ .c _ 00c w o

o

Q_

J

117

..,C::
q.)

2"

H

I-,-
C3

Q..
rr"
ILl
b"J

co

118

r,

u)

{J,
A d) (_

([) U) f,l,

-- (b
(_ lJ

l-J .,I U}

_'J 1.4
{++G lJ ,I "_
.-'I ._ _j uj

f= l-J t } (n f;I,

O' ¢ I , +I

U) _O 'CJ

II _. ,1 .,t
,! I "'!

+, I _4

0 _-'
-M _ (_ t_ . _ ""

P.) P tY, (n
7(/)

_1 0 (t) • *_J

• _ _ II

,-I b c.o
II_ V 0 -4
::3 v _-+ _ .,t
_J (2, I.i :J
L) it"},-, I $i

(D .-.

R o
I.

II + J "
;] <: ,1

• +. C) V)

FJ
:'0 oo 0

I
U) tl t II)4
-,4 0

0 _?J I 0 -,+1
,-- I_ _ E _

- +- • ,, i-J I_ i,

II U_ (n
II " _J "" II

P- _t C ,r-I

_"+ _ _ • _ _--, ""

%-J I] I } {/_ 4 }

00 0 0 (_ r_
t_ O_ _,+ P..T, f-: E:
(/) _ _ t/) -+l -+1

J

119

|

Z

_W

J
w

$
!
v

w

: _._

4 _W_

_ \

, ?,__a

J

120

8

a_

8

121

m

122

(/)

0

-" "u)

{J}" U_ (tj

• (1) O, I J _:
II t) - |) ' I U)

Ill I: (/) ,_I in :>
(]) ";'_ , I U) .,I

- 1) C) () I ... _:1
() () (1) u) .,-I

ul ;> ;_ ,(: cl'l _ _ ,6
.... (/3 II () ,x: II _

• _- _._ l)
(1) , I

_ 1) " I,i ."1 .,I EJ

:| W, :_ "- , 1 :S I (LI' II

I) ¢} 0 l) _l (tl I) fll uJ _01

_- ,t (fl -- 0 I. _ ,r', _tl .(j

_1 ILl _'O _1 :) () 1.1 (_

() ,l: _lS C) (LI , . () b3 •
•,1 (I) l} ,I ,{: "' -,t _: (/)

nl i_ Ix'l u} II :" (1) li :" 0..... cql if} .. nl () (/)
• I |: ,L: - .L: .-, .,

ill _1) _d • _d _) "

(1) (]1 LI)
, I , I . I
,,. () (sj

I;o
0

II

i _}, E

o

.__ (,,o () ,.,,-'_

o m E s: d.
: _ _ -u 0 I _ (_ E

X .e--,

0
.--. _ _ 0

"0 (- O9 (n -_

-- o) _ I v)

o T T T T c E
E b_ ,,- _ ,.- _- o _l_ m

n- E o o o o o• • 0 • C _, ,-I

".._._ o 0 0 0 0 o • m
• _ :3 C
_) 0

ORiGiNAL _:v'_E _S
123 OF POOR QU,2,LKTY

124

=

125

=

126

Boeing's Work in Formal Methods

Dave Fura
The Boeing Company

P_NG PAGE BLANK r',_OT,FILMED

127

m
41
>

41

i /

i' \I Ji

" i{!

2

"ill i
"!'JJ'

if! i -"
z

128

A

"10

C
0
(.1

v

_P
.>

JD
0

:_ JA

.. _ - _i_

129

r-
U
L-

.o

C
0
m
4_

u
.w

u

o

"0
0

Z"
0

E

0

f/)

U
2

G.
W

® !li!!,,!i

I

1
jli_i

n

0

I,I.I

• =.|
n

_.___i °0

m

130

i

"o
Oc
d=c

E_
Oo
u.. 4-.

,<

131

z

132

DO-178B and Formal Methods

George Finelli
Assistant Head, System Validation Methods Branch

NASA Langley Research Center

PRECEDING PAGE _i..ANK rIOT FILMED

133

a
z

0
n-
O

(J
,<
m
<
0
I--
rr

a
0

I--
W

1
<

rr
0
u.
a
Z

m
CO

!
0

m _ _ ;_
t--

"_ < -._ 'T, ;

134

uJ
I-.-

(n
C]
0
-r

=E
-I
,<
=S
n-
O
IL

U)

n-
i,i

Z
0
0

o

o

(n

i_ oI-
u .,>_ <{
c._ u.

woo ._ 3: .u

z3"_= Z
re_m _ I_) C

j oS

f I

_.'.:

N -

e_
o ._

°i

_f

. _ _,:

._. ®6 _o

.OE _"E

0

-I _5 c o_

- _ __
0 _-= _=,,tL _"

"°°i!

°_
° : i

5

135

z

136 --

Introduction to

the Boyer-Moore Theorem Prover

Warren Hunt
Computational Logic, Inc.

PREC_NG PAGE Bt.ANK NOT FILMF,D

137

138

!
t

139

| |

ii ++
! j+"i i itl

+

140

i
t

J
!

t
I

i

|

141

II

t
!

i

I
!

i

142

i I

J

!

l I
,-: w r-m_ o o

N orl . sD .rl .w4PI *-. II "H I_k

"i• _ _ 0 .-'. 0_4.1 ¢_1

,|, i III

143

! ,,i
d

_ J

!ii!i!i!iiiiiii!ili!_n+ _

r:_ ::" _ _ _

Ii,+,,lu++++l++t+_+:+++++++++++++i+++

I I

I

I

I
I

)

144

145

146

r

O_ =

,,,_._
L_.._

_- ill

Z
0

-)!

_ _) __

1

!
)

147

m

E

148

Introduction to PVS

Natarajan Shankar
SRI International

149

Specification and Verification using PVS

N. Shankar

shankar_csl.srl.com

Computer Science Laboratory

SR] International

Outline

This talk Is a short tutorial on specification and

verification, using PVS as an illustrative example.

• Background to PVS

• Overview of PVS

• Some Examples

Background: Past Experience

Considerable accumulated experience on

verification at SRI

Systems developed at SRI include: Boyer-Moore

Prover, HDM, OBJ, STP, EHDM, etc.

Other Systems used include: Affirm, RRL,

Gypsy, Muse, etc.

Verifications include: Byzantine fault-tolerant

clock synchronization, Byzantine Agreement,

G6del's first incompleteness theorem, and many

others.

Background: EHDM

Designed at SR] around 1984.

A specification environment based on

higher-order logic with parametric modules,

Implementation mappings, Hoare logic prover,

etc.

Theorem Drover based on skolemization, manual

instantiatlon, and Shostak's decision procedures.

Example verifications include: Byzantine

fault-tolerant clock synchronization, Ramsey

theorem, Byzantine Agreement, Fault-masking

and Transient recovery, etc.

150

Background: Lessons Learnt

Decision procedures are extremely useful but

only a small part of what is needed.

Highly automatic theorem Drovers are

inappropriate: difficult to control, and provide

very little useful feedback.

Low-level proof checkers are inefficient (both in

machine and human terms), and also fail to yield

a satisfactory proof.

Logics with limited expressibility are easily

mechanizable, but place a large burden on the

specifier.

Some highly expressive notations are nice for

pencil-and-paper work, but might be difficult to

adequately mechanize.

PVS

Started In mid-1990.

The goal was to combine clear notation with a

productive proof development environment to

produce machine-checked, yet "humanly

readable" proofs.

PVS was primarily Influenced by EHDM, but also

adapts ideas on language and inference from

IMPLY, Boyer-Moore Drover, LCF, HOL, ML,

Nuprl, Vedtas, OBJ, and many other systems,

PVS consists of a core language definition,

parser, typechecker, and proof checker.

Contributors to PVS include Sam Owre, John

Rushby, Frledrich von Henke, David Cyrluk, Judy

Crow. Carl Witty. and Steven Phillips.

PVS: Overview

PVS has been used to check proofs of

• the Boyer-Moore majority algorithm

• ordered binary tree insertion

• a version of the Schr_ler-Bernstein theorem

• Byzantine Agreement

• a pipelined processor (due to Saxe), and

other hardware examples.

These proofs can typically be completed in less

than a day.

Overview: Decision Procedures

PVS proofs make heavy use of arithmetic
decision procedures. Any TflE01LF_J_below is
automatically proved.. CONJECTUEEsare either
false or unproved by decision procedures.

trithueti¢ : 7111E01L¥

1.7.V: TAR m_nbor
aritk : TNFJ)ltEN

I • 2"y IWD y • Sev INPLIES Set • 18,v

bedtrttk ; COEJECTbT.E

z • 2* 7 &liD 7 (Sev ZRPLIES $*z • 17QT

badarlth2 : O_IIJF._TUIUt

=<0 JID 7¢0 II(PLII_S loy>O

beddiv : _3ECT_ItE

(x/y) • •]XFLIES z • (1,v)

|oo4dlv : CGgJI_FUBE
y/,,O Itl_ (x/y) • • II_LIF.S x • (yev)

anotherd|v; TNEoRBq

y /- 0 lED (z/y) • (v/y) IRPLII_ ((x-v)/y) > 0

|, J, k: TAB tat
|mtlur_th : T]IF._It I_R

2*i • S AWM i • t IMPLIES i - 2

bedulth3: C_IIJ_TUP_
2*x < S AID • • i INPLIES x • 2

END arithuotic

151

Type Correctness Conditions

Denominator for division must be non-zero.
Typechecking the previous theory generates type
correctness conditions, baddlv_TCCt IS not
provable, hence a type error.

arlthMtl¢ : THEDRY

BEOIII

r, y, •: VAR number

arlth : THEOREII

x < 2 • 7 il_ y < S * v IIIPLIU $ * n < 18 * •

badarlth : COWJECTURE

z < 2 • y AJiD Y _ $ * • TNPL] INt $ * z < 17 * •

badarlth2 : COJ J_T_RE

x • 0 LID y • 0]NPLIU n * y • 0

baddiv : CONJECTURE

(x / y) • • |NPLIF_ z • (Y " v)

Subtype TCC |ensratod for y

baddiv.T¢Cl: OBL|OAT|OII (FOULL (Y: number): 7 /= O)

gooddlv : C_3 ECTURE

y I= 0 II_ (n / 7) • • INPLIES n • (7 * v)

tnotherdiv: TBEON_q

y /- O An (x / 7) • (v / Y) |MFLIU ((x - v) / 7) • 0

t, J, k: VAR lnt

intarltb: TRF_R_ 2 * I • S _ i > I IRPLIES i - 2

badarlth_: COWJECTURZ 2 * z • 5 AIID x • i |NPLI_S x :

END arl'chmet t c

Example: Binary Trees

Binary trees can be defined as abstract

datatypes.

The following datatype declaration introduces

the constructor leaf with recognizer leaf?, and

constructor node with accessors val, left, and

rlght, and recognizer node?.

Typechecking this datatype declaration
generates the theories binary_tree_adt and
binary_tree_rec-mod (shown below).

5{nary._ : "rYP_ : BITFI2rP_ _ _ _ =

_EGII

lent : leaf? = _'÷ :

node(eel .* T, left : binary.tree, right : blnary.tre*) : node?

binary.tree

I0

Abstract datatype theory

blnary.tree.adt[T: TYPE) : 'TREOR¥

BF_I|

binary.tree: TYPE

leafY, node?: PRig(binary.tree]

leaf: (leafY)

node: IT, binary.at;e, binary.tree -> (node?)]

val: [(node?) -> Y]

left: [(node?) -> blnary.tree]

rtJbt: [(node?) -> blnary.tree)

leaf.extensionality: iliON

(FOULL (leafY_war: (leafY)): leaf • leef?_var)

node.exteustonaltty: Alien

(FORALL (u_e?.var: (n_de?)):

node(val(node?.var), left(node?.vLz), rigbt(node?_var))

= nodo?_var)

van.node: AXIOM

(FORALL (nodal.ear: ?), (node2.vtr: binary_tree),

(nodeS.war: blnary.tree):

val(node(nodei.var, node2.vnr, node$_rar))

m nodal.vat)

left.node: AXI_q

(FI_ALL (nodal.war: I), (node2.uar: blnary.tree),

(nodeS.v_r: blnary.tree):

left(node(nodal_vat, node2.var, nodeS_ear)) - node2_var)

right.node: AXIOM

(FORALL (nodal_yarn T), (node2_var: binary_tree),

(nodeS_vat: binary.tree):

right(node(nodal.vat , nede2.var, node$.var)) - nodeS.rat)

blnary.tree.disjolnt: AIIO_

lOT (leaf?(binary.tree.•ar) _1_ node?(blnary_tree.var)))

binary.tree.inclusive: ALTON

(FORALL (binary.tree_ear: binary.tree):

leaf?(blnary_tree.var) OR node?(biaary.tree.var))

binary.tree.induction: iliUM

(FORALL (p: I_[biuery.tree]):

p(leaf)

tn

(IrORALL (nodal.vat: T), (node2.var_ blnary.tree),

(nodeS_vet: blnary_tre*):

p(node2.var) _HD p(node$_var)

INPLI£S p_node_nodel_var, node2_var, nodeb_var)))

II_LIES (FORALL (blnery.tree_var: binary_tree)

p(binary_tree.var)))

11

152

b lnary.t me.nat .ran ((lnaf7 .f_n : mat),

(mode%fun IT, nat, nat -) nat])):

[biztry.tree -> n&t] =

LIBDA (binnry_tree.var: bimeJry.tree)=

CISES binary.tree.vat O(r

leaf: leLt?.hn,

node(nodal_vat, nodn2.var, nodeS_vet):

noda?_fes(nodei.var 0

binnry_t ms_nat _re¢ (leaf ?_f us,

aode?.fun) (nnds2.var),

binnt_/_t rnnooat .roe (lnaf ?.fun,

aode?_fnn) (nndeS.var))

ENDCISES

binary_tren.nrdinnl_rec((lnnf?.fu: nrdtntl),

(nodn?.fnn: [T, nrdintl, ordinal

-> ordinal])):

[binary.tree -> ordinal] =

LJRBDA (binsryotree_var: binary.tree):

CISES binary.tren.var OF

lnaf: lnaf?.fun j

nods(nodal.vat, nodn2°vnro node$.var):

aodn?.tun(nodei_var,

binary_tree_ordinal_me (letf?./un j

node?.fu) (nndn2.vnr),

biaary.t rae.nrdinalornC (leaf?. fun,

node?.fu) (nodeS.vet))

SNDCISU

EI_ binnry.tren.ldt

Recursion combinator

binnry.tree_ren.nod[T: TYPE, flap: TYPe]: THEORY

9_lJ

USIJG binary.tree.odt[T]

binary.trnn.rec((lnaf?_fun: tense) ,

(nodo?_fun: [T, ru_e, rL,_o -> rnnte])):

[biniry.ttno -> ran|el •

LJUBDA (binary_tree_vat: binary_tree):

CISES binary_tree.vat OF

leaf: leaf?.fnn°

node(nodal_vat, nodal.war, nodeS_war):

node?_fnn(nndei.var,

binnry.trnn_rnc(leaf?_fu° node?.fnn)(nodni.var),

bianry.trnn.rnc(lenf?.fun, aodn?.fnn)(zode$.eer))

ENDCASee

END binary.trnn.rec.wd

12

Ordered Binary Trees

nbt IT : TYPE, <- : (total.ardor?IT])] : TNEORY

SSOII

OSlJ_ btnnry.trne.ndt, binary.tree_me.nod

1, |, C: Vdlt binary.trnn[T]

x, y, z: ¥1R T

pp: VIE FRED[T]

chnckall((pp : PEED[T]), 1): 1_ol •

b|nnry.trno.rnc(TRUE,

(LANBDA s° (n, b : bool):

(n An b ZND pp(z))))(A)

i. J, k: VItR nat

sine(A) : nat -

binnry.tron.roc(O, (LANDS1 z, i, J: i + J + 1))(1)

orderod?(A) : J_.COISlV_ ban1 •

(IF node?(1) 7NI_I (chncknll((LAHBDA y: y<=val(A)), Ieft(1)) Al_

checknlI((LIKBDI y: vnl(l)<-y), riKht(1)) AND

orderod?(left(A)) AND ordernd?(risht(A)))

ELSE TRUE FJIDIF)

BY size

insert(z, A): RP.CURSIVE binary.trnn[T] =

(CASES I OF

leaf: node(n° lee_, leaf),

node(y° D, C): (|F z<ay TREE nnde(y, |nnert(n, B), C)

ELSE node(y, D, insnrt(n, C))

ESDIF)

E]IDCiSES)

BY (LJJqNDA n, A: slze(A))

orderod?.lneert.step: FORNULI

pp(z) IND chnckall(pp, i) INPtIE3

¢hncknll(pp, insnrt(z° 1))

ordered?.lnsert : FORMULA

ordernd?(A) IJaPLISS nrdernd?(inenrt(s, A))

END obt

13

Example Proof

nrdnred?.inenrt :

J.......

41} (FORJLL (x: T), (1: binary.tree):

erdnrod?(A) INPLI me o_dered?(insert(x, 1)))

Rule? (induct "A")

lnductin| nn i,

this yields 2 subsoals:

ardnrod?_tnonrt. I :

i

_1) (FOPJLL (n: 7): nrderod?(lenf) INPLIES ordnrod?(tneert(x, leaf)))

Rule? (skolemi)

Far the top quantifier tn i, nn introduce Sknlen constants: (xf3)

thin simplifies to:

ordnrod?.insnrt.l :

|

41) orderod?(Innf) IMPLIES nrdnrod?(insnrt(st3, leaf))

Rule? (dslmp)

Ipplyin 8 dlsJunctlve slupllfi¢atinn,

this siuplifiee to:

ordnrod?.inenrt.l :

{-t) ordnred?(leaf)

|

I} erderod?(lnsnrt(z$, leaf))

Rule? (rewflte "Insert")

Rewrltin| using insert,

this simplifies to:

14

153

ordsred?.tnsert.l :

I-i] ordsrod?(]oal)

|

_l} ordered?(nodo(zf$, leaf, leaf))

_aleY (rewrite "ordered?" +)

Reoritlng using ordoredY,

this 8implifio8 to:

orderedY.tnsort,l :

i-i] ordersd?(loof)

J

_1} (ckeckall((LAHlJDl (y: T): 7 <" x!5), leaf)

ABD ¢hscklll((Lfd(BDl (y: T): x!5 <e y), lso_)

AND ordsred?(loaf) UD ordored?(loof))

_ol*? (assert)

Invokin_ decision procodurom,

this si_plilies tel

ordoredToinsert.l :

[-1] ordorsd?(loaf)

|

_I) ¢hockall{(L_qBDA (y: T): y <= X_S). leaf)

AND ¢hockoll((LAMBDA (y: T): x_$ <= y), leaf)

R.I*? (auto-rewrite "blnory-tree-rec|T, booq')

Installing autosatic zevrito8:

binary.tree-zoo[T, boo1],

this simplifies to!

ordored?.inoert.1 z

[-I] ordsrod?(loaf)

|

it] ch*ckall((LAMBDA (y: T): y <= s!3), loaf)

ARD ¢hsckall((LAMRDA (yz T): x!3 (= y), loaf)

ordered?.iuort .2 :

|

41) (F_iLL (nodeS_vet: T), (nodol.ror: b/neff.tree),

(nedo$.vnr: bleary_tree) : _

(FOPALL (x : 7) :

ordered?(nodel_var) _NPLI_S ordorod?(insert(x, nodal.rot)))

AgD

(FORA tl (s: T):

ordered? (nodeS_vat)

IIqPLIE_ ordered?(lasert(n, nodeS.vat)))

]NPLIES

(YOJUILL (s: T):

ordsred?(node(neds|_var, nods2_var, nodal_mr))

I_qPLIES ordorodY(tnsort(z, nods(nodal_tar,

l_ods2_vnr,

aodsl_rnr)))))

]tul*? (skoJem_)

For the top que_tiftor in |, we introduce _rolme constants:

(nodal_vet!4 mods2.vnr!8 nodal_vat+el

this simplifies to:

ordsredT.inanrt .2 :

|

{1} (I"_AL[. (s: T):

ordorsdT(nodsl.var:S)]NPLIES otderodT(insort(x, n_el_=Vt_S)))

AID

(FORJ.LL (x : T) ._

ordered? (aode$.var ! 6)

|J(PLI_ ordered?(insert(s, nods3-vnr!6)))

INPLIES

(F_LL (r: T):

srdsred?(nods{nodsi.vsr!4, nodal_vat:5, nodal_vat!6))

INPLIF3 ordsredT(insert(n, nodo(nodel.vor!4,

nodel_ve_r !6,

nodol_var ! 8))))

his? (then (sptlt)(rewrlte "checknfl'))

Splittlng ¢onJonctlons,

this yields 2 sabgoals:

t-i] ordered?(lsed)

_!} rkorkoll((LAIq_A (y: T): y <- x+3), loaf)

Rewriting ultng checkoll,

This completes the proof Of ordsred__t_sort.l.l.

ordered?.tnsert.l.2 :

[-1] orderedT(leat)

J

(i} chockol1((LANB_ _fi T): s_ <= 7), ls_)

This coupletem the proof of ordsredT_tnsert.l.2.

This couplotos the proof Of ordsrsd_-insert._1. --

ltuZ*? (dMmp)

&pplyfn 8 disJanrtivo simplification, -

this simplifies to:

srdored?.lassrt .2

,(-i) (t_tlL_.(s_ T):
ordered+ (nodal.vat, r,)

INPLI_3 ordsredT(insert(z, nedo2.v_r!S)))

ordered? (nods$.vnr _8) 1

INPLI I°e ordored?(insort(z, n edsl.var!8)))

41} (FOP.ALL (X : i _ _ 1 "

ord*red!(nodo(nodsl_r_r'4o nodel-vnr(6, aode$.rar!6))

INPLTE,q ordered?(inssrt(n, node(nodei.vnr!4,

nodo2-vtr ! 8,

nodal_vat !6))))

Ruts? (skolem_)

For the top quantifier in 1, go introduce Skoleu constants: (x!7)

this stmpllfian tO:

ordered?_insert.2 :

[-13 (FO_ALL (x: T):

order ed? (nodal.vat ! 6)

IMPLIrq order!dr(insert(x, nodal.vat!S)))

[-23 O"OlULL (s: ?)_
order ed ? (no_do3-vnlr !6) _

INP[.I_ ordsred?(Insert(n, nede3.var!e)))

J T_ T T

_1} ordsred?(nods(nedsl_var!4, aods2.rar!S, nodsl_v_ri6))

|NPL|ES ordsrod?(_esrt(x!?, neds(nodsJ_var!4,

nsdol.rtr !S,

nede3.var !8)))

=

-2

m

154

ItslsT (rewrite "ordered?" -i-)

h_ritiq ueiq ordered?,

this slmpllfios to:

ordsred?.lnsrt .2 :

[-i] (F_tALL (x: T):

orderod?(node2.v_r _ 6)

IMPLIES ordered?(insert(So nodel-ve_rtS)))

[-2] [FOBILL (x: 7):

erder ed? (modeS_war t 6)

IIIPLTQ srdsred?(lussrt(z, andeS-raftS)))

| n.

{i) [chscknII((LABD& (7: T): 7 "= nodsl.eart4), nods2.ver_$)

AND chscksll([L/MBDi (7: T): nodeS_rare4 <= 7), nodeS_verSe)

IIlD srdsred?(node2-v_rt6) /JJD ordsred?(sods$_vartS))

INPL|ES srdered?(issert(rt?, node(nodeS.yarn4,

his? (d_mp)

ipplyin| disjunctive siupll|lcitton,

this simplifies to:

srdsrod?.tnsert.2 :

node2-vut6,

node$.wrte)))

[-i] (FQRALL {z: T):

ordsred?(nods2_vulS)

IMPLIZ-q orderod?(tnssrt(z, node2_vtrtS)))

[-2] {FOgtdLL {X: T):

ordsred?(node$_vsr;6)

ZNPLII_ orderod?(insert(s, nods$_vnr_6)))

_-$} checknl]((LAl_JDl (y: 7): y (= aodsi-vsrt4), sode_.var!6)

(-4) chscktll((LllmDA (7: T): nodel.vsr;4 (= 7), nodeS-vet!8)

l-S] oresred?(ueds2-v_r;S)_-S ordsred?(_eds$_var_O)

|

41} ordsred?(insert(st?, nods(sodsl.verte,

seds2.vsr;6,

sedeS_vsrtS)))

lisle? (rewdte "insert" +)

|ssrrittn| units| insert,

this 81npllfiss to:

srdered?.inssrt. _ :

t-i] (I_P.AT.L (z: ?):

ordsred?(msdel.vLr ! S)

|NPLIES ordsred?(inssrt(s, nods2.var;6)))

[-2] (YOItiLL (x: 7):

ordered? (t_odel_vtr t S)

IMPLIES ordsred_(inser_(So nodeS.war;S)))

[-3] chscksll((LilqBDi (7: 7)_ 7 <= nodel_vtrt4), _ode2.vsr!S)

[-4] checksll((LIKBDA (7: T): nodel.vart4 (- y), nodeS_yarnS)

I-S] ordered? (node2.var ! h)

[-8] ordsrod?(node$.vu _6)

|

{1} ordered?((|F st? <= uodel.vsrt4

Tram

node(nodal_rat t4,

insert(s!7, nodsl.vsr _S),

nodeS.tar t 8)

ELSE

mode (nodei.var t 4,

node,_vat _6,

insert{s!?, sodeS.vsr :S))

Es_Ir))

RsZs? (lift-if)

Lt/tin(; IF-conditions to the top level,

this s/spittles is:

ordsrod?.lnsert .2 :

[-1] (FORALL (as T):

or dot ed?(node2_vnr; 6)

|NPLII_ orderod?(lnsert(s, nsdsl_var!S)))

(-2] (FOAALL (Z: T]:

ordered? (nodsLvu ;e)

INPL|I_ ordered?(tssort(s, node$-var;e)))

[-3] ¢hecke/I((LIKBDI {y: Y): y (a sodei.vmr:4), node2.vsr_S)

[-4] chsckalI((LAI(BDA (y: 7): nodeS.re, r;4 <- 7), nodeS.rut6)

I-S] ordered? (neds2-vlur; S)

I-S] ordered? (node$.vtr; S)

|

_1} IF st? <- aodel_wr14 . .

111111

order ed?(nods (nodel_var 14,

Insert (xt 7, neds_.var t S),

nede$_var ! S))

ELSE

order od? (l_ode (Iodel -vast t 4,

nodel_vs:r t S,

insert(st ?, node$.vert 6)))

ESDIF

lisle? (propS)

By propositions] simplificstisn,

this yields 2 subsoals: " _

ordered?.tnssrt.2.f t

_-i} r;? <- nodei.vLrt4

[-2] (FOItALL (x: T):

ordored?(sode2-vsr;S)

INPL| _e oTdsrodT(insert(s, nods2-vsrgS)))

[-S] (FOtALL (r: _):

orderodT(node$.vtr;8)

IMPLIES ordered?(tusert(s, sedeS.vsr16)))

[-4] checksll((LdESDl (y: T): y <- nodei.vlcr;4), node2_vnr;S)

[-6] ¢hecksll((LiNl!lDA (y: T): sodei.vnrt4 (= y), nodeS_vet;S)

[-6] ordersdT(seds2.vnrl$)

[-73 ordsred?_ods$.wrt4)

J

_i) orderedT(nods(sedei.vtrt4, insert(st7, sodel.vartS), sodeS.vsr_6))

_nls? (rewrite "ordered?" _-)

Re.finis 8 ssinj ordered?,

thls sinpllties to:

oz_JeredT.isssrt.2.1 :

[-1] st? <e nodei.vart4

[-2] (FORALL (s: T):

ordered?(_ode2.vtr;S)

IMPLIES srdered?(Isssrt(r, node2.var_S)))

[-$3 (FOP.ILL (x: ?):

ordoredT(sode$.ve_r;_)

IMPLIES srdered?(lsssrt(r, nodeS-yarnS)))

[-4] chockslI((LANSDt (Y: 7): 7 (0 nodei.vtr;4), nods2.vsr!$)

[-6] chsckaZl((LINIDl (y: 7): nodst.vtr!4 <- 7), sode$_vnr!e)

[-S] srdsrsd?(sod_.vart$)

(-7] orderedT(nedsS.vtr!6)

|

_i} (checksll((LANBDa (y: 7): y <= nodei.vnr!4),

insert(st7, sodo2.v&re6))

ASD ckockall((LIMBDA (y: T): uodel-vsr!4 <= y), nodeS.vat!S)

ilrP ordsred?(t_ssrt(st?, nods2.vsr!$))

_ES srdsred?{nodsl.nr!e))

155

Xul.? (quint?)
Found substitution:

• lets •;7,
Instontiatiu| quutifted variables,

this 8iIplltieo to:

ordered?-inunrt.2.1 :

(-I] z!? <= nodei_vlr;4

{-2) orderedY(mode$_ror;S) INPLII_S erdered?(tnsert(s!7o node2_vmr!S))
[-3] (FOJIILL (x: T):

ordered?(nodeS_vtr;6)
INPL|E-S ordsred?(insert(•, nodeS_varY4)))

[-4] chsckIll((LAKBDA (y: T)I y <= model_vat!4), node2.var!_)

[-el chsckelI((LAMDDA (7: T): model.per!4 <8 y), nodeS_vat!el
[-6] ordered?(oods2.varlS)
[-7] ordered?(node$-vor!6)

i

[1] (checkall((LANBDA {7: 7): 7 <= model.vat;4)+ -
insert(t!7, nods$_vtr;$))

AiD checknll((LANBDA (y: ?): nods|.vnr'4 <= y), nodsq_ver!6)

AND orderod?(lnsert(x!7, •ode2_rer!5))
AND o:dered?(node$-vnr!$))

Rule? (propS)
By propositional sislplificltion,

this siuplifies to:

ordsred?.insert.2.1 :

_-1) ordered?(imnert(x;7, mods2.var!S))
[-2] •;7 <= nods|.var!4

[-3] (FORALL (•: T):
ordersd?(nodeq.vtr!e)
IMPLIES ordsred?(insert(x, sideS_vet;6)))

[-4] checkolI((LANBDI (7: T): y <- model.par!4), node$_ver;S)
[-6] chsckell{(LiNBDA (7: 7): model_vat!4 <= y), •edoq.v_r_6)
[*el ordered?(node$.vLr!S)
[-7] ordered?(nods$.vzr;6)

|

_1} chscktll((LANBDA (7: T): 7 <, nodsl_vtr!4),::
insert(s!7, node2_ver!6))

R.Ie? (rewrite "ordered?insert_step")

RsmTttin 8 gsin G ordered?.insert_step,

T_iJ completes the proof of ordered?_innrt.2.i.

ordored?_inssrt,2.2 :

[-s] (POIIiLL (s: Y)_

ordered?(node2-ver!5) + "

IMPLIES ordored?(inssrt(•, node2_var!G)))

[-2] (FORALL (z: T):
ordsred?(node$.ver!6)

IMPLIES ordered?(inssrt(s, noqsB.v&r'8)))

[-33 checks11((LAlqBDi (y: T): y <- nodlS.Vu!4), uc_Se2-var!8)
[-4] checkeIlf(LAKBDA (y: 1): model_tar!4 <= 7), nodeq_rer!8)

[-8] ordered?(nodo$.var;S) _: :

[-8] ordered?(node$.vmr!8)
!...... . _=+_,-_y _,_...... __......

41} x!7 <" model.vat!4

<2} ordsrod?(nods(nedll-vir;4,
uode$_Vtr;S, __

insert(x!7, nodeS.vet!el))

hie? (rewrite "ordered?" +)
Rsvrltin G nlin| ordered?,

this simplifies to:
ordered?.lnsert.2.2 :

[-i] (FORALL (x: Y);
ordered?(node$.vmr!8)
IMPLIES ordered?(insert(x, node2_var!S)))

[-2] (PORALL (z: T):
ordsred?(nodoq-vtr!8)

]1qPLIES ordered?(insert(x, nodeS_vat!el))

[-$] checkaII((LA|IBDA (y: 7): y <" model_err;4), •ods$.var!8)
[-4] checkall((LINDDA (7: T): model.vat;4 <- y), nede$.var!8)
[-6] ordsred?(node2_vo_r!S)
[-6] ordered?(mode$_vtr!4)

|

[!] • ;7 <- nodeS_varY4
(chsckalI((UMBDA (y: T): 7 <= nodsi_vmr!4)0 node$_rtr!S)

lid

chsckoll((LAMBDA (7: T): nodel_vez;4 <= y).
insert(x;7, node$.vnr !8))

tND order ed ? (node$-var !S)
AND ordered?(insert(s;7, nodeS-vat!el))

Rule? (quartO? -2)
Pound substitution:

S _et8 X!7,
Instentlmti_ q_utified varieblss,

this simplifies to:

156

erdersd?_inssrt.2.2 :

[-1] (PORALL (x: 1):
ordered?(nodo$.vor!S)

IMPLIES ordered?(inssrtCs, node2_vnr!5)))

{-2} ordered?(nodeS.var!8) INPL|ES ordered?(insort(x!7, nodsq_vtr!8))

[-3] checksll((LANBOi (y: T):y <= midSt.Tar!4), nods$_var;6)

[-4] checkeIl((LAMBDA (y: T): nodet-ve:;4 <- y), nedo$-vnr!d)

[-8] ordersdY(nods$_vsr!6)
[-8] ordered?(oodeS_eLr!@)

|

(1] x!7 <- nedsi:_r!4
[2] (checke11((LAHliDA (7: T): y <= modsl.varl4), node2.ver!8)

ASP
chIckniI((LAHBDA (7:7):nodl|.vir+4 <' _).

tnunz_(x!7, nedeq.ver!8))

AgD ordered?(node$.var!6)
111) ordered?(inssr_(x!7, neds$.var!6)))

Rule? (propS)

By propositional limplificttion,
this simpliliss to:
ordered?_iunert.2+2 :

_-1} ordered?(insert(•!7, node3_var!6))
[-2] (FORALL (x: T):

ordsred?(node2-rtr!$)
|HPLIES Orderod?(iulert(•, nede2_ver!S)))

[-33 chocRaII((LAI(SDI (y: T): y <- model.err!4), node$_rer!6)

[-4] checkaII((LAHBDA (y: T): nodsi._mr!4 <= y), noqeq-ver!8)

[-6] ordered?(nodo2.var!_]

[4] ordered? (nodeq_vtr _8)

|

{1) checkoll((L_4BDI (y: ?): model.vat!4 <- y),
inser_(x;7, nodeq.ver!8))

[2] x!7 <- model-vat!4

r

%

I•1•? (rewflte "ordered?JnsertJtep")

Rewritin 6 glll_ urdsrod?.|o••rtJtop,

thin stnplifio• to:

ord•rod?.luort .2.2 :

[-1] •rdered?(lm••rt(• !7, •od•$.vor ! 6))

[-21 (F'OItA',,L (u: T):

ord•r od?(ne_o2-v_r ! S)

INPL|tm •rd•red?Eins•rt(•, aod•2.verg6)))

[-$] ckockall((LJKBDA (Y: T): y <" model.wart4), nods2.var_S)

(-4] ck•ckslI((LAHBDi (y: 7): •od•l.vu!4 <- y), •odeS.ratiO)

I-S] ordered? E•o45e_.ve_r ! S)

[-6] ordered? {nod•$_vtr ! $)

|

t_ •od, l.v•r,4 ,- •17ch•cktlI((LINI_A (y: 7): •od•i_vor!4 <-y),

l•••rt (n !7, nOd•_-VU !g))

[3J •_7<= •od•l.var 14

R,I•? (typepred "obt.<=')

Addin| tlqpe con•trot•to for •bt.(e,

this si_pllfi•• to:

orderod?.Ins•rz .2.2 :

i" i) total.oral•r? El3 (•bt.(=)

[-2] ordersd?(tn•ort(•_7, •od•$-vtr 18))

E-3] (rORALL (n: 7):

ordarod? (nodo2oV•r ! 6)

INPLIES ordarod?(i•sert(•, •od•2_var!6)))

[-4] chock•ll((LANBD& (7: T): 7 <" •od•l.var_4), •odu2_var!6)

E-S] ch•ckell((LAKBDI (7: 7): •odoi.var!4 <= 7), nodeS.wit!e)

[-6] ord•r•d? (Bod•2-v•r ! S)

[07] ord•r•d? (•od•S-v•r ! 8)

|

(1] nodei_vor!4 <" •_7

[2] ckeck•ll((L/lfllDk (y: 7): nod•l_var14 <- 7),

in•ors (x !?, nud•3_war t 8))

[3] s!7 <= •odoi.vtr!4

hie? (rewdte "total_order?')

Ruwritl•| osiris total.oral•r?,

this stmplifi•• to:

ord•red?.in••rt._. 2 :

t-l) VO_r..L(•, 7:7): •_-yae$,<-x
[-2] urd•red? (in•or t(• ! ?, nodeS_wit 98))

E-S] (FOtlLL (z: ?):

• _l•r ed? (•od•:.var ! S)

INPL|ES urd•red?(inssrt(z, •odo2.var_6)))

(-43 ch•ckoll((LiNBDi (y: T): 7 <= •odel.vur!4), uods2.vu!S)

[-6] checknU((LANBDA (7: 7): •odor.war!4 <- 7), node3.vur!8)

E-e] ordered? (uod•2.var _ $)

[-7] ordered? E•od•S.vu !8)

|

[l] nodeS-war!4 <= sit

E2] check_IEELAI(BDI (7: 7): •oriel.war!4 <- y),

tan•r• (• !7, nod•$.vur! 4))

E$] n!7 <= nod•l.war!4

h•l•? (quest?)

Fo_d substitution;

y (st• n17,

• 8ere •oriel_war!4,

=•stontittll_ qaantlfled variables,

this simplifies to:

orderod?.losort .2.2 :

t-l} •odo/.var!4 <_ sit DiS z!7 <= nodel.vor!4

E-23 ordersd?(lusort(• !7, •odo$_vtr ! 8))

E-S] (FOIt&LL (x: 7):

urd•redY(•od•2-wtr ! S)

ZNPL|Im ordered?(tx•ort(z, node2_varI6)))

[04] ckeckall({LdlmD4 (y: 7): 7 _" nodut_vezt4), node2_vart6)

[-63 checkalI((LANBDI (7: ?): aerieS.rat!4 <- y), nodeS.war!e)

[-4] urdored? (nodo2.vtr I 6)

[-7] ordered? (nodoS.ve_r ! 8)

|

Ell nodel.var!4 <= •f7

[2] chockull((LIRBDA (7: 7): •odoi-var!4 <= y),

tnsort(nl?, node$-rar ! 8))

E$] st7 <0 nodeS_yarn4

Rule? (propS)

By pToposltio•ol stmpltfic&t|ou,

This coq_letos the proof of orderodY_i•sort.2.2.

This completes the proo_ of orderod?_tneert.2.

q.z.n.

Sun the new proof? (Yes or lie) 7*•

gould 7on like a brief prixto•t of the proof? (Yes or go) yes

orderod?.ixsert :

|

_1} (FORALL (x: 7), (A: binary.tree):
ordered?(A) IliPLIES orderod?(tnsart(z, l)))

|nducttn| on I,

which yields 2 subgools:

orderod?.insort.l :

|

tl) (FO_tALL (x: 7): ordurod?(|ea/) INPLIB ordured?(lnsert(z, lout)))

For the top quantifier in i, •• introduce Skoleu constants: (xt$)

Applyin 8 dlsJuoct/vo simplification,

neuritis| •aim 8 insert,

Rouritiq •sin_j ordered?,

Iuuokinj decisio• procedures,

lantslllu 8 automatic roarltss:

blnary_trse_roc[7, buell,

Split•in| conjunctions,

which yields 2 sobtools:

ardarod?.insort.i.t :

l-l) ordored?(lusf)

|

it) chschtll(ELARBDI (y: T): 7 <" x_$), leaf)

lewrtttn| •in 8 checht)l,

This cot_pletes the proof of erderod?.insert.i.i.

orderod?_insart.12 :

t-1} orderod?(lnf)

|

li) ckeckal)((Lf_q|Dl (y: 7): z!3 <= Y), leaf)

lewritin 8 •sin 8 checktll,

This couple••• the proof of orderod?-tns•rt.l.2.

157

orderod?_lnssrt.2 I

|

{i} (F(NULL (neded_var: T), (nede2_var: binary_tree),

(nedeS_var: binary_tree):

(FORALL (z: T):

orderod?(nedo2-var) IHPLIES ordered?(lnsert(a, nodo2_var)))

_8D

(FOULL (at Y):

ordered?triodeS.vat)

INPLIES orderedY(laeort(r, nodeS.vet)))

IRPL1fl_

(F(_ALL (n: T):

ordored?(nodo(ao4ol.var, nede2_vsr, nodeSoTar))

TNPL|ES

ordered?(insert(r, nods(nodoi-var,

node,-Tar,

nedS3oTar)))))

For the top quantifier in i, ge introduce Skoleu conotute: ==:

(nodelovnrf4 node2.var!S nodeS_Tar!e)

lpp]ytn S disjunctive eispltficetion,

For the top quantifier in i, we introdnce Sko]eu con|taste: (s!?)

Revrttta| asin$ ordered?,

Applyin S disjunctive eimpllficatios,

Revrlti_|bJln S insert,

Ltfttn| IF-conditions to the top level,

By propositional sinpllficatlnn,

vhich yields 2 8=btoalsx ! _ _ _i_ _*

erdered?.insnrt.2.i =

4-I} a!7 <= nodal_vat|4

{-2} (FCaALL (s: T):

ordered?(nodo2-var!6)

|NPLIES ordered?(insort(a, aode2.var!S)))

{-s} (F_qALL (st T):

_-6} chack_ll((Lil_bi (7: T): nodei.var!4 <- 7), nodeS_vat,e)

{-?} ordored?(nodqS.var!8) _: _ _ " :

{i} ordere_?(nods(nodol.var!4,

ineort(=!?, node2.var!6),

node3.var!e))

RoTritin$ asia| ordered?,

|netentlatin| quantified variable|,

By propositional simplification,

Revritin_ uetn_ erdered?.insert_otep,

Thlo ¢onpletes the proo_ o_ ordo_od_inqort.2.1 !._

ordsrod?.iaH_.2.2 :

{-l} (FORALL (x: T):

ordored?(node2_vnr_S)

IMPLIES ordered?(inssrt(r, node2_rar!6)))

4-2} (F_I_ALL (x: T)t

ordsred?(node$-ve_r!_)

IMPLIES ordered?(iassrt(z, noda$_vtr!e))) .

4-3} checkall((LA_DA (y: T)= 7 <= no4sl_var!4), no_e2.v_r!S)

4-4} chsckall((LANlSDl (y: T): sodei.varf4 (= y), nodo$.rtr!e)

{-S} ordored?(neds2-va:|S)

_-8} ordered?(node$_vartd) _

J

{2} ordorod?(nodo(aodol-vnr!4, _ _ _

nodo2-vsr_S,

insert(at?, node,.retie)))

ZeTritin| usin_ ordered?_

I_stentiatin_ q_a_tifted variables,

By propositional sinplificstion,

ltevritin K ustn K ordered?_inssrtJtep,

Adding type constraints for obt.4_ _ : : _ _:_

Rogritin| uoin_ total-ordsrY,

Instsntiattn| quantified Tartablee, ._

BY propositional elupltflcati6t,

This completes the proof of ordsred?.inos_t.2._.

Q.E.D.

Notes on the Language

The core logic is a simply typed hi_gher-_order

logic.

Specifications are structured into parametric

theories.

Types can be parameters _,,

Assumptions can be used to constrain the

parameters.

Set-like predicate subtypes can be defined.

These make the domains and ranges of

operations explicit.

Theorem proving Is employed to carry out

typechecking. = =_ -

Automatic facilitiy for generating abstract

datatype theories.

15

158

Notes on the Proof checker

Sequent representation for proof goals.

Backwards proof construction by applying

red uctions.

Heavy use of powerful decision procedures for

equality and lnecluality.

Powerful primitive inference steps.

Roughly twenty such steps.

Strategy mechanism for encapsulating proof

patterns.

Ability to save and rerun proofs and partial

proofs, and display proofs.

Conclusions

PVS exploits the synergy between language and

inference.

The combination of powerful inference steps:

decision procedures, rewriting, propositional

simplification, etc., makes it effective to develop

proofs that are both certified and convincing.

Future goals:

• To enhance the language to further exploit

the inference capabilities

• To generate readable proof outlines

• To make proofs robust and easier to

maintain

16 17

159

160 z

Logical Foundations of Computing

over the Floating Point Reals

Richard Platek
Odyssey Research Associates, Inc.

PREGEI_]3 pA_ BLa.NK NOT FILMED

161

b

Logical Foundations of
Computations over the Reals

Richard Platek

Odyssey Research Associates
ORA

12 August 1992

NASA FM Workshop

© ORA Corp, 1992 _"_/'A"I

SL-0046 1

162

Two ORA Technical Reports

"Verification of Numerical Programs Using Penelope"

"Denotational Semantics of Numerical Programs"

00RA Corp, 1992 _1_/_

SL-0046 2

Basic Problem

What does it mean to say that a given program "computes" a real valued
x

function such as sine x or e when it never really does?

Classical answer:

The program computes an approximation which is "sufficiently accurate"

But what does that mean?

O ORA Corp, 1992 _ll_")j,_

SL-O046 3

163

Two Fundamental Problem Areas

£3 Scientific Computations

simulations, cacluation of engineering solutions, numerical experiments to
explore theories, "number crunching" as part of experiments

correctness is vital for decision making

£3 Embedded Computations

computers as part of coninuous systems

sense-compute-activate

O ORA Corp, 1992 ,_--"_/'_
SL-0046 4

Botton Up Interpretation

We reason at the level of the CPU and Floating Point processor so that we can

calculate tight error bounds and we use numerical analysis techniques to
estimate the accuracy of the computation.

Perfectly fine, but too concrete

Numerical Programs are not written in machine language or assembler.
They are written in higher order languages like Fortran, C, Ada. The
concrete analysis is not portable across CPU's.

B. The concrete analysis is not portable across FPP's. We should reason in
terms of the IEEE floating point standard or the Brown model.

In particular, our specs and proofs should be independent of the word length of
the machine reals except in so far as the word length is knowable at the
programming language level (e.g., Ada's float'small)

z

© ORA Corp. 1992
SL-0046

164

Verifying floating point computations

O Algebraic properties of floating point operations are a mess; and detailed
descriptions are highly implementation dependent.

O Little automated support exists.

O We are incorporating support for both quantitative and qualitative error
analysis into Penelope.

This talk concerns qualitative error analysis.

© ORA Corp, lgg2 _"'_/_
SL-0046 6 Ij v'LV_,_

fr

Sources of error

Roundoff error

O (Mathematical) Truncation error

D Implementation strategies (modeled by non-determinism)

© ORA Corp, 1992
SL+0046

165

Example of Compiler Implementation Strategies

In both C and Ada the statements

X := y '_

if x = y

may set w to either 0 or 1 !!!

z;

z then w := 0 else

w := I end;

O ORA Corp, 1992SL-0046 8

Quafitative error analysis

intuitively: prove programs under the assumption that various sources of error
are present but "negligible"

Not equivalent to assuming that error is non-existent

O ORA Corp, 1992
SL-0046

Z

=

166

Qualitative analysis of roundoff error: asymptotic
correctness

Mathematical model via limits

If a program is run on increasingly accurate machines, then its answer
approaches the specified result in the limit.

Mathematical model via algebra

Use a model of "approximate reasoning."

The algebraic model is easier to use

00RA Corp, 1992
SL-0046 10

Algebra for approximate reasoning

Introduce additional predicates on the

numbers"

x is close to y

x is not close to y

x<y or x is close to y

x < y and x is not close to y

Relations to standard operations

00RA Corp, 1992
SL-0046 11

167

Substitution in Approximate Reasoning

If f is continuous, x _ y =_ f(x) ,._ f(y)

Therefore,

X '_ X 1 and y _ yl =_ x T y _ xl + Yl

But comparisons are not continous

x _ y and x < z does not imply y _< z

© ORA Corp, _g92 _l_"_/_

SL-0046 12

f
Algebra of approximate reasoning

Mechanical translation of (many) facts of ordinary algebra to facts of
approximate algebra.

For example:

(x Jr 1) 2 > x

translates to

',_ J =

O ORA Corp, 1992 _111_/'_" I -

SL-0046 13

=

=

£

z

168
N

Modeling Ada floating point operations

Introduce specification predicate for each basic operation

rplus(=, y, z)"

z Is a possible result of evaluating = + y

Sample property:

fplus(=, y, z) =_ z _ x Jr y

fie(=, y, b):

b is a possible result of evaluating x <= y

Sample properties:

fle(_,, y, true) -_ x < 7j

fie(x, y,,falsc) _ x _ y

O ORA Corp. 1992
SL-0046 14

Example specification and proof

function mysqrt (a, small: in float) return float;

should compute the square root of a to within small

© ORA Corp, 1992 AII_F_/' _

SL-0046 15

169

Naive specification of mysqrt

IN a > O.0 and small > O.O

RETURN z SUCH THAT Iz 2 -- aI _< small

© ORA Corp. 1992 _/'_1
SL-0046 16

= . -

III I III i -

Amended specification of my s q r t

IN a >_ O.O and small _ 0.O

RETURN z SUCH THAT Iz2 - aI_ small

@ ORA Corp, 1992 _i5") 7_

,_L-0046 .- - 17 _lur\u_ i

170

Calculation will use Newton's method

For any a>O,

v/a -- limiti__ooZi

where

O ORA Corp, 1992 _1_-'_/_
SL-0046 18

Code for mysqrt

function mysqrt (...) is

x : float;

begin

if (a <= small) then

return 0.0;

end if;

x:=a+l.O;

while (x*x-a >= small) loop

x := (x+(a/x))/2.0;

end loop;

return x;

end mysqrt;

Loop invariant annotation:

small, x, a, (x 2 -- a) _ 0.0

J
O ORA Corp, 1992

SL-0046 19

171

Proving termination of the loop

Proving termination of the loop

Loop bound annotation

loop bound x 2- a

contraction I/4

lower bound small

© ORA Corp, 1992

SL-0046 20

Accurate Square Root

function sqrt (a: = in float) return float

is

i

begin

return mysqrt (a, float'small);

end;

© ORA Corp, 1992

S1_-0046 21

,/ 172

=

=

Embedded Systems

Want to be able to reason about computer controlled real world systems.
Want to know what the system does in real space/time.

The total syste can be described by Iogico-differential equations.

@ ORA Corp, 1992 _')/_
SL-0046 22

Example

State variables

x(t : Real) : Real

y(k : Int) : Int

Transition Relations

= f(x(t), Y(ta))

y(k+l) = g (x(1),

ttJ= max integer _< t

y(k))

@ ORA Corp, 1992

SL-0046 23

173

I_

r

z

i
174

Formal Safety Analysis

Nancy Leveson
University of California at Irvine

PREC£DING PAt.._.- BLAN_ _JOT FIL_K'D

175

<

II
ij !ii

0

/%

do

z_ _

=

=

176

J

r,j

177

i

=

r

z

178

d

2: =

t,4

>:,

o -"

o

rat)

C._
z_

_z

_z

0_

179

JIJ

i
j !

m.

• • • & •

180

m

o

181

.,,.,

]:

°_

,-, _ _ _ -_

}

=

£

=

z

182

0 *

._ ,!_.

_ _ _."_ _.._ _._._ _

183

I i

Z__ __ _: V_

!j '"

el

=, .

184

°_

185

_ _- o

o

4b _

-- e ": .-

, :
!

' i!

', t1_1 ,'
I

, ,,
!

. !
$

' i|

' J
,",_ I_l_i_
, j!

!

!

|

|

!

!

!

| • -

|

|

', _ -
!

,,
!

J

186

°

:il
v_.<

II 11 II II

.. _
_e

187

• J

g

.,!_ _

¢3
o

.r,
,eJ
°_

L

r,.)

•- !
.=J

4
_= I! =.

O_ _..

13
o

"r.,

L.

•i !i
..=_

=1 ¢:_
E_

I=
o
"i::

r_

=" _1

,3= .= .<
•_ o

oo=_

¢.==._,
,qp

==
o

188

a a
0 0

,_ tli
o_ _o_

o

.i

a_

!i

._ _ _,

.,.,._.__.__ _,.-q

l

190 o

I

>,

• _ 8 sa

o__. ,_.,._i_.._._].._. _.

191

eo

i,-,4

=

192

193

I
!
I

i_] i _! il

.............................ii•.
I lib
I'I

I"........."I.....
I I
I I
I !
I I

• "I, I
l I
! I

! I . ..,

1,4
U

o

,--4

IV
Id

194

E

II

o_l._l.j.j . .,,

.i

H

.o

.o _ _ z

_ _ oo _

• _,
_ ,.-._ ,., _

r.,,b:'_ _ .

_ __

_- _ _ _,_--"_
• .._ _ "'= ,_

.._'_ _._o = _ ..= _ v .,o _'_._

.: "_ _ '='--
U3

195

196

•"= !

i ==

197

198

The FM9001

Warren Hunt
Computational Logic, Inc.

PRF.GEDING PAGE BL.Cd'_K_'-JO*TF|Lr_cD
199

f

f

m

a,
o

I-,

u

I-

¢II

J

i-m
200

201

202

0 II_J --

-t- - -
-- p, --

EEIE+ _-.-_-
.+-I-- .,-__ -
o_ o o,I -

-!- -l-

+-a- il_e---
i,i

]J
Jlltltit

-__L__ _1___1__

_i +i+-- _t . _+-=
-- rs -- -- P+ --

__.-o_s._.|i|__= -

ill, ++l.++_+m.,

i++ ++.+++++ i

J

i

d

im
203

f

I.-

 T!I!rT!!o _o

llrlllTllll
.i

J_

J

f

_ _,. z t_ I _ i

|

[

2o4 _ _

J

i
|

f

I!I
E I

° I !I
o .

J

f

OJOl O' O_,OIO1010_ C),O_ 0,0_

O_OIO_OiOIOlO_OlOIO|O_Ol!O_
O_OlO, 0,010|01010,0,010_0,

01010, 0,01!011
O|OlOI r- 0t010_

ololo, i _ o,o.o,olo_oI o_o_o_
010101 _ O'OlO,
010101 _ C_OeO_
010|01 0 010101

01010_ O_ 0_01101_010_C)IIOIOiOl

0101f0_ O_ O_O_OIfOIC_ C_ O_0110,
0_01010_ O"OIO_.OIC_ C_ Ol O 0

i 1!,_iilIi

"h

J

i
1!

205

f

9

J

i

J
!
0

f

|

Im
206

f

_ ._ _ _. _ ®

o _ 9_; .N _) _ =-
U. _®_ 8 ______'_

._.N I- 3 _ ,_ C "OO

: • , o o • Effi

_o _ _

_ E

_.@ z I"13 "O

-" 2_- 2
i:: =E _ O _ _._

J

207

208

f

=i 15

|

i

o II I

=0" J
L-

N

J

i ' ii
J

209

f

f

'< _ _

_j m=

u) _.N "

J

I.
210

I

Im

I
!

Im
211

Im
212

213

=

F

eI •

oo _

"- -_E -_=_ E=
o-_ ®o _

_ _.
_ ll _ _ _ _ "_

J

Im
214

Derivational Techniques for Hardware

Steve Johnson
Indiana University

215

Design Derivation*

Steven D. Johnson

and

Tthrmlmr][]me

Conq_tter Science Department

Indi.'ma University

I)*dgn derivat i_B

deduction, _ivatlea, tic.

The DDD eystpm

Syntaz

A.pectt ddedp sirra

Experlmentai-!oa

FMASnx &.dv.ti_m

F Mgi101 d_i_tlom

Comc|tt _lonn

Ma|timodAI ee*_i_4g

Ilcteqtemecme feemal _*teeem

TlmakJ I_ gSg IIII'II*IIIHt, NOT Mill

216

Design derivation

formal system

• a lanquage, r.h'_ of Ry.tax

• tran.*fi, rmalions, nd_.'_,)f rc:t_ming

[ormalimtion

• wp_*ting design,_ an expre_iorm

• representi.g designing u an inference process

For example, verification

• proof of an implementation, E [= I D S

• derivation of an implementation, S =_ I

rA(.,,,O *-- (,,e)]

L _'..k + _. ÷ ._-, akJ

,q_;

(,,',O = (,,_) [

d =.+,k I
J =o|+it [

I aistr_li_n

tdke_

(,,_) = xA(,, _)
d = _'4 J.]

(q,.) = HA(.,_)]

._(., t) ¢:(,, 0 I
'#'' I

" = "['+ _' I
c = e_ J

,,a+ {.3+ u_. _ ,,,.+{., ;.,:)
] _,+ (.i +u)c

'11! ! ¢

2 ak

p_l.k +._

3 _

3 elk- +- el_

s/e+z
T let+ +el+
e_.J",K', i,0

3 ,,A_ =.j(.,k_)

I_I-k
I._ m.i(.,t,.)

sI .;=,"X'.t',+)
sI] i,,t,

11 lie

r Im _ m*j(e,ke)
;J .._..6,0

s (.l + _4_ :_ ,,_j(..t,,O
s m..i(s, kO

ulmme

ilw

Ulall_

vl, =1, =.at

AI. _1.t ._1

'::} I, _i.2.1, | 23

IIlllOlml,t'

VI, 2.1, 2.4.1

^I, t.4

:)I, 24.1, 2.43

exd middle

A/I, 1.6, I,S,] 3

hI, 1.T

_, i, 2, 23

VI, 41

V_o 4,1

iimmB

V[o 43, 44.1

A/, 442

_I, 44.1, 4.43

illume

vi, 43,46,1

AI, 4(12

_i, 46.l, 4.8.3

^£, 4.1, 4.5, 4.3'

_J', 4.1, 4.8

AI_. l, 3, S

Deduction and Derivation...

o have a lot in common

o reflect common modes of rea.qoning

o involve "proof en_neerin K"

o diould be integrated

$,_ S, (¢,)

-_ S+ (C,)

$, (¢,)
• I

1. E
2. !

3. 11

4. t;

k.
S

Illllfl.

41/l|m.

_z

tell. I

Digital Design Derivation system
(DI)D)

• An interactive transformation system based on

first-order* functional exprt_sions

* Specialized for digital system derivation

DI)D a.q a formal system

• A core of secure algebra

o Extensibility

o Derivation management

Modes of expression

P
D

S
_m¢lum

217

Single Pulser

"Sl'generates a _nit p_Ise for every pulse _cei_ed"

A

1/o _ o/1

1/o

define (SO In Out) m

(if (- o (? ZnD
(SO (> In) (! 0 3ut))

(SI (> In) (! 0 Out)))

define (SI In Out) -

(if (- o (7 In))
(so (> In) (_ t Out))
(sl (> In) (! 0 Out)))

A

define ($P In) " Out

.vhoro

X " (cone 0 In)

Out u (ande I (note In))

In = (o,o, 1, 1, n, o, O,o....)

x = (o, o, o, i, _, 1, o, o,...)

out = (o, o, o, o, o, 1, o, o,...)

218

B

Behavior to structure:

define (FAC n) - (F n 1)

where

(F u v) " (if (zero? u)

V

(F (dcr u) (mpy u v)))

define (FACeyetem n) - (list V R)

where

u - (cone n (DCAU))
V - (cons 1 (MPY U V))

n = (ZERO? U)

............. i

FM8501 specification [Hunt]

(defn SO_ (very-fire roBl-_ z-flq ,ofllI |-faq ioYlq tiq)

{if {.llstp I=q)

fll.t rq-Ylle _l-UW ¢-_lee ,-flee I-flee =-flee1

lgorr (r ee.tllc- af t oy - op_-t-pecs- !lcrweet

ree-ftl* rNl_neo ¢-_lee v-flee t-ilee n-Yle¢)

(_e | -Ne-citer- slI-_Yl_e

tee-file reel-m c-flee v-flee =-flee R-,lell

f_-¢¢-6ol (_t-lwct_ctlee ree-,lle Hi-=m))

c-flee

(c (bv-iIl-CV-reeult. re_-fltB re•l-Ha ¢-fleel))

(=ld.t.-v
(b-e¢-Ill IcmTrNl-Jutrvctlm tee-file recl-Ne)l

voylee
(v (h_-iIl-cv-reemlt. reeoflle reel-i ¢-f1.11)1

(b-t¢-6et (cxwut-lumt_ctlcm ree-_tle feet-metal)

I-llq I

(=.vop (t_-_O-HS (bY {t_r-811-CV-TeNlte

ree-fl|c r_l-_eR z-fiee))))l '

(qpdlt.-v
(b-cO-See (c_n_-I=etv_¢tion reS-llle reei-xco))

i-flee

(uee=llvep [bY-SO-SO (iv (tq-all-cv-renlta

yq-ftll yoQl-me e-flee)))})

(cdr ill])))

B

Serialization

define (FACeyoton n) - (list V R)

vhere

O - Ccon* n (DCR U))

V - (cons ! (HPY U V))

It - (ZERO? U)

define (FAC n) = (FOn 1)

vhere

(FO u v) - (if (zero? u)

V

(F1 u (mpy U V)))

(FIu v) - (FO (dcr u) v)

FM8501 implementation [Hunt]

(dofn Ila-II_llgK (tit fend gTigo d_ _ t_J t I_-|_or4 41ti-_gl

tee-file _Mf-_i c-fiB S v-flbl I-fl_4_ m-fill

t-re• b-rq l°vee vlolll-m rlel-_l

i_-vatth-dee-kttt OTI creole)

(if [Itl Ittp rffItli)

{lltt ur TsN vrite _icb r_oet le-ttore dltl-_t yeeoflle

r-o _-_lq v-_lq I-flee s-fl_ i-rq b-ree |-tee

_[nel-iN _•ml_ pee_-ntct-dee-hletury)

{lll-nACStlm (_r .,¢r i-_ee 4tect r•eeS _o-_z_r.1

(reid Nr I-_ee)

{e_ile ur l-r_J a_-_6r_)

(drift (tit oYl¢ll))

(reeo_ (c_r oracle))

(_o-lteT4 _o-ltoFi c=fliC_ v-fle_{ i-flt_ _-_'lq

i-re• _r)

(rq-_lll rq-flle dItt-o_t t-rq mar tO-liege

(_Ir-_t _4_-_t _ee-file |-r_ i uaY rust)

(c-ft_ 8 c-flee e-zee I-r_ i-ree _er)

(v-flee v-flq |-tee t_ee c-flee I-vee _r)

(t-flee t-flee s-tee t-tee c-fl_ l-rq Hr)

(_oflee i-flee t-tee t-_eS c-flei t-iq _r)

(i-ro_ i-re• vliU_l-m_ ree-fllc J-r_g _ir ruet_

{_rq b-re$ vl_l-i_ Ice-file I-rt I may fete•)

[I-rq i-tel vllul-mm tit)

(_Ie_sI-NO reeltc_ r_ed gvlte _ddr-ivl

(tt_4_lt [¢1I _lc|i)))

(re•l-_m I.NI "He r*ed _ I_ • _r-o_t deta-_

4 -_t ¢¢h-_ee-hl I_C3_Jr
(d_ic_ (tit orecle))

(reeel (cer _ylcle)))

(ettck-d_ yetd _lti (dqeck fear oylcl•))

(¢d_ llillt I c)

Ill

219

Block diagram of BIGmaehine

L

Architecture derived from SOFT

Superimposed architectures

_ml-tit

220

Detail of a local factorization

=

Physical organization of FM8501

o

u rrJG

• I fn_v i#1
!

o

Structural manipulation

Experiments with FM8501/2

I*-I

[m/_,,_-c_u, ct,.o I ?

Lallc Slmlkuis J

Ir-- l

9

D

aot/m A.,o*,4 i_

Procedural abstraction

define (FAC n) - (F n 1)

vhere

(F u v) - (i! (zero? u)

v

(F (dcr n) (HPY u v)))

define (/4PY n e) = (H n n O)

vhere

(H v x 7) = (if (zero? v)

7

(if (even? v)

(N (12 v) x (*2 y))

(H (12 v) x (÷ (*2 y) x))))

221

g

D

u,lrmAq_ ua,_,_

Incorporating procedures

define {FAc n) - (F n i O)

vhere

(F u v v z) " (if (zero? u)

v

(N u v u u))

{M u v v z) = (if (zero? u)

(F (dcr z) v 0 #)

(if (even? u)

(s (/2 u) v (.2 v) x)

(M (/2 u) v (+ (.2 v) v) z))i

D

. Sequential Decomposition

_,, rl_____

(FO u v w d_) =

(i_ (zero.* u)

v

(cons (list ! u v)

(rl +u v C> n) (> d=))))

(F_ u v m d,,,) =

(cons (list 0 u v)

(if (hi? (? dm))

(FO (dcr u) (? n) (> n) (> _a))

(FIu v (> n) (> d_))))

Design derivation

Construction of an implementation by equi,_lenvs

pre_rving t rans/'ormaLions.

maintain!rig the global view

(D making local transformations

mundane design

0 no =complete" algebra

0 fixes "equi_alence"

0 inhibit.q cleverness

ml/tu,l+.,w.l+i+.ml

Interactive verification

222

Results of Workshop Survey

Each participant at the workshop was asked to complete a detailed survey. I Fifty-three people returned

the survey; this section presents the results.
For each question asked on the survey, the specific question is reproduced and the answers to the question

are tabulated below. If a person circled multiple answers to a question for which only one answer was

expected, the results were weighted. For example, in response to question 2, one Formal methods developer
circled both b and c. This was tabulated as 0.5 for b and 0.5 for ¢.

Totals or averages are given where appropriate. Not every person answered every question on the survey,

so the totals for different questions may vary.

I. What is the nature of your organization?
a. University b. Formal methods developer

c. Govsrmnent d. Aerospace industry

Question 1
a b c d e

Industry 0 0 0 22 6
Government 0 0 14 0 0

University 2 0 0 0 0

FM Developers 0 9 0 0 0

Note: Six people did not believe that the four listed choices accurately described the nature of their

organization. The specific answers given were: transportation, railway transportation, non-profit

R&D org, industry/coaaarcia2, other, and don't know. For the purpose of recording the answers, these
6 surveys are grouped with Industry.

21 W'aat is your primary job function?

a. Basic research b. Applied research

d. Xanagenent

c. Product development
e. Other

Question 2
a b c d e

Industry 1 17 5 2 3
Government 1 5 0 4 3

University 1 1 0 0 0
FM Developers 3 1.5 0.5 4 0
Totals 6 24.5 5.5 10 6

a. lovice

d. Considerable

3. Please rats your understanding of formal methods theory and practice:
b. Somewhat familiax c. Knoelodgable

o. Expert

Question 3
a b c d e

Industry 8 10 6 4 0
Government 6 4 3 0 1

University 0 0 0 I I

FM Developers 0 0 0 I 8

Totals 14 14 9 6 10

1NASA Langley personnel involved in planning and conducting the workshop did not _ out a survey.

223

Note" One of the goals of the workshop was to attract people with widely varying understanding of

formal methods. These numbers suggest that this goal was met.

4. What is the general level of awareness of formal methods within your organization?
a. Bone b. Minimal c. Sparse
d. Moderate e. Considerable

Question 4
a b c d e

Industry 7 13 4 1 3
Government 4 8 1 0 1

University 0 0 0 2 0

FM Developers 0 0 1 0 8
Totals 11 21 6 3 12

5. Before attending this workshop, how would you have rated the 8tats-of-the-art of
formal methods in terms of its potential for immediate application?
a. Bet usable

d. Ready now

b. Needs more time

e. Has boon ready

Question 5

c:_ Nearly ready

a b c d e

Industry 4 16 4 3 1
Government 2 5 4 1 1

University 0 1 1 0 0

FM Developers 0 0 6 1 1
Totals 6 22 15 5 3

Note: Three FMdevelopers, one who answered d and

with the comment "for some applications."

two who answered c augmented their responses

Now that you've attended this workshop, how would you rate the state-of-the-art of

formal methods in terms of its potential for immediate application?
a. Not usable b. Needs more time c. Nearly ready

d. Ready now e. Has been ready

Question 6
a b c d e

Industry 1 16 8 3 0
Government 0 4 6 2 0

University 0 0 2 0 0
FM Developers 0 0 7 1 1
Totals 1 20 23 6 1

Note 1: See note for Question 5.
Note _: The results to this question demonstrate that the workshop did alter some people's perceptions

of the state-of-thwart. Particularly interesting is that before the workshop, the perception of the state of
the art by nine people was at one or the other extreme, but after the workshop, the number of people at one
or the other extreme was reduced to two.

224

7° Please rate the extent to ehich fornalnothods is practiced today eithin your

organization:
a. lever b. Seldom c. Sporadically

d. Occasionally e. Often

Question 7
a h c d e

Industry 15 9 2 1 1
Government 9 3 0 2 0

University 0 0 0 1 1

FM Developers 1 0 2 1 5
Totals 25 12 4 5 7

Note: One FM developer answered a, and _ided the comment "on our ova systems."

8° When do you think that formal methods gill be used often in your company?

a. 0-2 years b. 2-5 years ¢. 5-10 years
d. 10-20 years o. lever

Question 8
a b c d e

Industry 5 7 12 3 1
Government 4 3 3 2 0

University 1 0 1 0 0

FM Developers 5 2 1 0 0
Totals 15 12 17 5 1

Note: An individual from industry answered c with the comment "unless required by customers
earlier."

9. Hoe difficult do you feel it is to put formal methods into practice?

a. Sxtronely
d. Somoehat

b. Very
e. None at all

c. Moderately

Question 9
a h c d e

Industry 7 9 12 0 0
Government 2 7 4 1 0

University 0 1 1 0 0

FM Developers 2 3 4 0 0
Totals II 20 21 I O

I0. &re you personally inclined to apply formal methods on a design project in the near
future?

a. Strongly inclined b. Koderately inclined c. Indifferent
d. Not inclined o. Would quit first

225

Question 10
a b c d e

Industry 13 9 1 5 0
Government 8 6 0 0 0

University 2 0 0 0 0

FM Developers 6 3 0 0 0
Totals 29 18 1 5 0

11. Hoe well prepared are the professionals in your organization through education and

previous training to absorb the technology of formal methods?

a. Minimally b. Somewhat c. Adequately
d. Receptive s. Well prepamed

Question 11
a h c d e

Industry 15 8 3 0 2
Government 7 7 0 0 0

University 0 l i 0 0
FM Developers 1 0 0 1 7
Totals 23 16 4 1 9

12. In your organization, which of the follosing obstacles exist that inhibit or
prevent the use Of form_nethod'? (chec_alith_t_i_i_)
___ Managenont believes it is inpractical

___ Engineering staff believes it is inpractical
___ Lack of sufficient knoeledge about formal nethods

___ Lack of required skills

___ Up-front cost too high
___ Have had negative experiences Luthe past
.__ Do not believe it is useful

___ |o obstacles exist

(Mgrnt)

(Eng.)

(Kno)
(sk u)
(Co,t)
CNeg}
CNot)
CNo.e ._

Question 12

Mgmt Eng Know Skill Cost Neg Not None

Industry 10 13 24 20 10 4 6 2
Government 5 4 13 11 6 1 4 0

University 0 0 1 0 0 2 0 0
FM Developers 1 2 1 1 3 0 0 4
Totals 16 19 39 32 19 7 10 6

Note: An industry representative checked |o obstacles exist, but added the comment "except

funding."

13. Hoe vould you rate the potential benefits of using formal methods?

a. Negligible b. Somoehat useful c. Moderately useful
d. Helpful o. Signlficant

226

Question 13
s b c d e

Industry 0 5 1 4 18
Government 0 0 1 4 9

University 0 0 0 1 1

FM Developers 0 0 1 3 5
Totals 0 5 3 12 33

Note: A person from industry circled e, but added the caveat, "if it does all that is advertised."

14. How would you rate the costs of foraal methods technology relative to the costs of
current practice?

a. Excessively higher
d. Somewhat lower

b. Sonewhat higher
e. Much lower

¢. Equivalent

Question 14
a b c d e

Industry 4 13 5 4 2
Government 2 8 0 0.5 1.5

University 0 2 0 0 0

FM Developers 0 2 5 0 0
Totals 6 25 10 4.5 3.5

Note 1: A government representative circled • and added "over system life cycle."
Note _: An industry person circled a, with the additional comment "don't see FM replacing anything

--- it only adds confidence and cost to date."

16. Bow a_eesivoly would you recommend your nanagenent pursue the use of formal
nothods technology?

a. Forget it

b. Keep up with developments
c. attenpt shall pilot projects

d. attempt larger applications
o. Full speed ahead

Question 15
a b c d e

Industry 0 6 20 2 0
Government 0 0.5 10.5 2 1

University 0 0 2 0 0

FM Developers 0 0.5 2 4.5 1
Totals 0 7 3415 8.5 2

Note: One industry representative answered c and added the comment "to conpletiont"

16. How nuch empirical evidence on the benefits of formal methods do you feel is

available for nanagers to make informed decisions regarding its use?
a. Insufficient b. Nearly sufficient c. adequate

d. More than adequate e. Plentiful

227

Question 16
a b ¢ d e

Industry 22 2 3 0 1
Government 8 2 3 0 0

University 1 0 1 0 0

FM Developers 4 3 0 0 2
Totals 35 7 7 0 3

17. Rate the importance of reusable formal verifications such as verified clock

synchronization circuits and verified softgare modules.
a. Ions at all b. $oneehat c. Moderately

d. Very e. Extremely

Question 17
a b c d e

Industry 2 2 7 6 10
Government 0 5 4 3 0

University 0 0 0 1 1
FM Developers 0 0 0 4 4
Totals 2 7 11 14 15

18. Rats the importance of generic tools (such as, semi-automatic theorem provers,
specification language typecheckers) that can be applied to softeare/hardeare

developmen__
a. None at all b. Soaevhat : c. Moderately

d. Very e. Extrmely

Question 18
a b c d e

Industry 0 2 5 11 10
Government 0 1 4 6 3

University 0 0 0 0 2

FM Developers 0 0 2 2 5
Totals 0 3 11 19 20

19. R_te the iaportance of the capability of formal methods to produce trustworthy
solutions of difficult problems i_ computer science.

a. lone at all b. $omeehat c. Moderately

d. Very e. Extremely

Question 19
a b c d e

Industry 1 3 5 12 7
Government 0 1 4 4 5

University 0 1 0 1 0

FM Developers 0 0 1 2 6
Totals 1 5 10 19 18

228

Note: An industry person wrote: "(a) who cares (practically) about CS? (c) for real problems.

We need trustworthy solutions to real problems!"

20. Where in the life-cycle do you feel formal methods can be applied most cost-
effectively?

a. Requirements

d. Implementation

b. High-level design
e. Maintenance

c. Detailed design

Question 20
a b c d e

Industry 15.5 8 3.5 0.5 0.5
Government 9.33 2.83 1.33 0.5 0

University 0.45 0.45 0.45 0.45 0.20

FM Developers 1.67 5.67 0.33 0 0.33
Totals 26.95 16.95 5.61 1.45 1.03

21. Where in the life'cycle do you feel formal methods can yield the most significant
benefits, irrespective of cost?

a. Requirements b. High-level design c. Detailed design

d. Implementation e. Haint enance

Question 21
a b c d e

Industry 20.33 2.83 3.33 0 0.5
Government 9.33 1.83 0.83 0 0

University 1.33 0.33 0.33 0 0

FM Developers 1.5 1.5 3 1 1
Totals 32.5 6.5 4.5 1 1.5

22.

d. 6 months to ! year

How long does it take to become proficient in formal methods?
a. Less than 2 weeks b. 2 weeks to I month c. i to 6 months

e. 1 to 5 years

Question 22
a b c d e

Industry 0 0 2 16 9
Government 0 0 1 5 6

University 0 0 0 0 2
FM Developers 0 0 1 7 0
Totals 0 0 4 28 17

Note I: Two people, one from government and one from industry, said that the answer to this question
was "dependent on background."

Note g: A person from a university circ]ed e, and annotated the answer with "or more."

23. What is your opinion of the following statement: "Proficiency in formal methods

requires a high degree of mathematical sophistication.'' ?

a. agree strongly b. Agree c. He opinion

d. Disagree e. Disagree strongly

229

-Question 23
a b c d e

Industry 9 i4 1 2 2
Government 5 6 1 1 0

University 0 1 0 1 0

FM Developers 0 6 0 2 0
Totals 14 27 2 6 2

Note: An industry representative circled a, but added, "but it shouldn't be the caso!"

24. To each of the folloging areas assign a number from 1 to 8 to denote the importance

of the area. Use 1 to denote that the area i8 extremely important, and 8 to denote
that the area is not important at a11. Please assign a 0 to any area about which

you have no opinion.
___ Basic Rodeling techniques

.__ Code verification (especially for £da)

.__ Education and training

___ Integrated verification systems _

___ Mechanical theorem provers
___ Reusable deductive theories (libraries of definitions and theories)
.__ Reusable, verified softgare libraries

___ Special purpose verification tools (such as Spectool, DDD, t Penelope)

___ Specification languages

.__ Worked examples

Question 24: Industry

0 1 2 3 4 5 I Avg.
Model. Tech. 3 11 8 4 2 0 I 1.9
Code Verif. 4 10 5 6 3 0 2.1

Education 2 15 10 0 0 1 1.5

Int.Vet. Sys. 4 I0 6 5 3 0 2.0
Mech. T. Prov. 4 2 11 7 4 0 2.5

R. Ded. Theo. 5 5 11 3 4 0 2.3

R. Soft.Lib. 2 7 II 3 5 0 2.2

Sp. Purp. Tool 5 0 7 14 2 0 2.8

Spec. Langs. 1 14 8 3 I 1 1.8

Examples 2 11 9 4 2 0 1.9

Question 24: Government

0 1 2 3 4 5 [Avg.
Model. Teeh. 2 5 4 0 0 2 2.1

CodeVerif. 2 4 2 5 0 1 2.3

Education 0 6 0 5 0 2 2.4

Int. Ver. Sys. 3 0 2 4 2 1 3.2
Mech. T. Prov. I 3 2 3 I 2 2.7

R. Ded. Theo. 2 1 2 4 3 1 3.1

R. Soft.Lib. 1 2 2 4 3 1 2.9

Sp. Purp. Tool 4 I 2 4 1 1 2.9

Spec. Langs. 1 4 3 2 I 2 2.5

Examples 1 6 2 2 0 2 2.2

230

Question'24: university

_, _ 0 1 2_ 3 4 5[Avg.
Model. Tech. 1 1 0 0 0 0 1.0

CodeVerif. 0 0 0 0 0 0 -
Education 0 0 0 0 0 0 -

Int.Ver, Sys. 0 0 0 0 0 0 -
Mech. T. Prov. 0 0 0 0 0 0 -

R. Ded. Theo. 0 0 0 0 0 0 -

R. Soft. Lib. 0 0 0 0 0 0 -

Sp. Purp. Tool 0 0 0 0 0 0 -

Spec. Langs. 0 0 0 0 0 0 -
Examples 0 0 0 0 0 0 -

Question 24: FM Developers
0 1 2 3 4 5 Avg.

Modei. Tech. 0 6 2 1 0 0 1.4

CodeVerif. 0 3 2 2 1 1 2.4
Education 0 6 2 1 0 0 1.4

Int.Ver. Sys. 0 5 1 2 1 0 1.9

Mech. T. Prov. 0 3 3 2 1 0 2,1

R. Ded. Theo. 0 3 6 0 0 0 1.7

R. Soft. Lib. 0 4 2 4 0 0 2.0

Sp. Purp. Tool 0 3 2 1 3 0 2.4

Spec. Langs. 0 3 6 0 0 0 1.7

Examples 0 5 2 1 1 0 1.8

Note I: Answers of 0 were ignored in calculating the averages.
Note _: For a few respondents, the answers to this question seemed inconsistent with answers to other

questions. We suspect that some people may have failed to read the question carefully, and as a result reversed

the ordering (that is, used 5 to denote extreme importance and I to denote no importance); however, we
recorded their responses as given.

25. To each of the following tools and techniques assign a nwaber from 1 to
$ to denote your perception of the usefulness of the tool/technique. Use

1 to denote that you believe the tool/technique may be extrwaely uJeful,
and 5 to denote that you believe the tool/technique is useless. Please

assign a 0 to any tool/teclmiqueabout which you have no opinion.

___ Boyer-Moore ___ DDD ___ EVES

___ H0L .__ Modelisation ___ luprl

___ Penelope ___ PVS/EhdR ___ Safety analysis

___ Spectool

231

Question 25: Industry

0 1 2 3 4 5 I Avg.

Boyer-Moore
HOL

Penelope

Spectool
DDD

Modelisation

PVS/Ehdm
EVES

Nuprl

9 1 4 10 3 1 2.9
8 1 7 6 5 1 2.9

12 0 9 4 3 0 2.6

16 0 6 4 2 0 2.7
19 0 2 4 3 0 3.1

14 5 2 3 2 2 2.6

5 6 10 5 1 1 2.2

20 0 3 3 i 1 3.0
23 0 3 0 1 1 3.0

1.5Safety Analysis 8 14 3 2 1 0

Question 25: Government

0 1 2 3 4 5] Avg.
Boyer-Moore 7 1 3 2 0' 0 2.2
HOL

Penelope

Spectool
DDD

Modelisation

PVS/Ehdm
EVES

Nuprl

8 2 0 3 0 0

11 1 1 0 0 0

13 0 0 0 0 0
12 0 1 0 0 0

8 1 2 0 0 0

7 3 1 2 0 0
12 0 0 1 0 0

12 0 0 1 0 0

2.2

1.5
w

2.0

1.7

1.8
3.0

3.0

Safety Analysis 5 5 1 1 0 1 1.9

Question 25: University

0 1 2 3 4 5 Avg.

Boyer-Moore 0 I 1 0 0 0 1.7
HOL

Penelope

Spectool
DDD
Modelisation

PVS/Ehdm
EVES

Nuprl

0 0 2 0 0 0 2.0

1 0 1 0 0 0 2.0

1 0 1 0 0 0 2.0
1 0 1 0 0 0 2.0

2 0 0 0 0 0 -

0 2 0 0 0 0 1.0

0 0 1 1 0 0 2.5

0 0 2 0 0 0 2.0

Safety Analysis 1 0 0 0 1 0 4.0

Question 25: FM Developers

0 1 2 3 4 5 [Avg.

Boyer-Moore
HOL

Penelope

Spectool
DDD

Modelisation

PVS/Ehdm
EVES

Nuprl

0 0 5 1 0 0
0 0 3 2 2 0

0 3 0 2 2 0

1 3 0 3 0 0

2 0 1 3 0 1

3 1 1 1 1 0

0 1 5 1 0 0
1 1 3 2 0 0

0 0 0 1 4 2

Safety Analysis 2 1 2 1 1 0

2.2
2.9

2.4

2.0

3.2

2.5

2.0
2.2

4.1

2.4

232

Note: See the notes for Question 24.

26. How expressive should a formal language be?
a. Very expressive (such as Z and VDN)

c. To the level of 1st order logic

e. To the level of propositional calculus

b. To the level of higher-order logic
d. To the level of Prolog

Question 26
s b c d e

Industry 14 6 2 1 0
Government 2 4 0 0 1

University 1 0.5 0.5 0 0

FM Developers 3 4 2 0 0
Totals 20 14.5 4.5 1 1

Note: Four people, one _omindustry and three_omgovernment, did not answer this question, but

wrote the followingcommentsinstesd: "depends on application," "to understanding of user," "this
needs to be decided on the basis of the domain of application requirements," and "depends on
ehen it is used."

27. Hog important is it to have a specification language that can mimic the notation

typically employed in the problem domain?

a. None at all b. Somewhat c. Moderately

d. Very e. Extremely

Question 27
a b c d e

Industry 0 3 5 12 6
Government 0 2 3 2 5

University 0 0 0 1 1
FM Developers 0 0 3 4 2
Totals 0 5 11 19 14

Note I: A member ofthe government answered e, and included thecomment: "to be accepted by
the engineers and progrmananagers."

Note g: Another governmentrepresentative did notcirc_ an answer, but wrote "It must not necessarily

mimic but must be readable by experts in the problem domain."

28. How important is the availability of powerful decision procedures in a theorem

prover (for example, decision procedures for linear arithmetic and propositional
calculus)?

a. None at all b. Somewhat c. Moderately
d. Very e. Extremely

Question 28
s b c d e

Industry 0 3 8 ? 5
Government 0 1 3 3 2

University 0 0 1 I 0

FM Developers 0 0 1 2 6
Totals 0 4 13 13 13

=

233

29. To each of the following areas assign a number from I to 5 to denote your opinion

as to the importance of NASA sponsoring work in the area. Use I to denote that you

believe it is extremely important for NASA to sponsor work in the area, and 8 to

denote that you believe NASA should not sponsor any work in the area,

__- Theoretical research (for example, developing theorem provers)

___ Applied research (for example, pilot projects applying formal methods)

___ Joint projects between traditional engineering groups and formal methods experts

I 2 3 4 5|Avg_

8 5 7 3 5

19 6 0 0 3 | 1.6

23 2 2 I 0 [!.317 7 2 2 0 1.6

___ Workshops such as this one

Question 29: Industry
0

Theoretical Research 0

Applied Ih'search 0

Joint I)rojecl,s 0

Workshops 0

Qu,_stion 29: G(_v¢',|'lll||_:nt I

0 1 2 3 4 5[.
I heoreti_ tl Research 0 3 5 l 4 0 [

Applied [{e_arch 0 10 1 1 0 1 | 1.5 [

Joint Projects 0 9 3 0 1 O| 1.5 [

Workshops 0 11 I 0 0 I] 1.4]

Question 29: University

0 1 2 3 4 5 [Avg;

Theoretical Research 0 0 i l 0 0] 2.5

Applied Research 0 2 0 0 0 0] 1.0

Joint Projects (} 1 1 0 0 0] 1.5Workshops (} 1 ! 0 0 0 1.5

Theoretical Research 0 4 2 2 1 0

Applied Research 0 5 4 0 0 0

Joint Projects 0 5 4 0 00] 1:4]

Workshops 0 2 4 2 I 0] 2.2 I

Note: See the notes for Question 24.

Questions 30-32 were not multiple choice. Only a fi_w representative comments from each organizational

category are included below. These comments are presented exactly as given; no editing has been done. For

these questions, Government and University participants haw_ been grouped together.

30. Wnat formal methods have you used?

Ind.stry: lloyer-Moore, cleanroom, Clio, EIII)M, IlOl,, ,_l.'ctool, tomp,)ral logic, VDM, Z

Gov & Univ: Boyer-Moore, cleanroom, DDD, FAll)M, IIO1., VI)M

234

FM Developers: Boyer-Moore, Clio, EHDM, EVES, HOL, PVS, Penelope, SDVS, Spectool, temporal

logic, Z

31. In what applications and parts of the life-cycle have you used formal methods?

Industry: requirements modeling, design, and testing, conceptual study, detailed design, verification of

algorithms, implementation

Gov _ Unlv: software requirements, high level requirements, avionics software, missile systems, electronic

message systems, design, implementation, academic research projects

FM Developers: hardware designs, microcode, detailed design, algorithms, high-level HW design

32. Any additional comments?

Industry:

• ''Workshops of this type where interested industries can attend and participate are

excellent opportunities for technology transfer, l would encourage NASA to continue

this type of interaction. ' '

• ''I would very much like to see a survey of (1) methods (2) languages it (3) tools

presenting PROs it COils of each. As a novice wanting to enter the field, where do
I start?' '

• ''Tools are very important to this effort. Paper and pencil will not spread to industry. ''

• ''It would have been nice to actually solve some simple problems using a formal technique

rather than seeing lots of talks about proofs. ''

• ''Suitable applications of FMs uas not elaborated on. I still cannot say 'where'

one should apply 'what' FM. ''

• ''Need ¢o separate HW FM's from SW FN's."

• ''This is one of the only forums I have attended that has had equal representation

from the software and hardware community sharing roughly e_ual concerns and a common
interest in a technology of equal value and benefit to each community. ''

• ' 'You are overcautious about overselling ' '

Gov _ Univ:

• ''We must find a way to better find errors in Reqm'ts"

• ' 'It is important for NASA to take a leadership position in Formal Methods for civilian

aerospace applications. _'

• ' 'FM appears to be currently the most feasible means of adding rigor and consistency

to the software development process. ''

• ' 'Keep holding this workshop! ' '

• ''I really wish copies of slides had been available at the conference. It would greatly

simplify notstaking. ' '

FM Developers:

• "There is no 'royal road' to FN for industry.''

• ''FM is powerful for educating designers. ''

• ''Formal methods are no panacea''

235

_

236

NASA Formal Methods Workshop Attendees

Jorgen B. Andersen

Honeywell, Inc.
Box 21111

Phoenix, AZ 85036-1111

Bob Baker

Research Triangle Institute
PO Box 12194

Research Triangle Park, NC 27709-2194

rlb@rti.rti.org

Mark Blckford

Odyssey Research Associates, Inc.
301 Dates Drive

Ithaca. NY 14850

emall: mark@oraeorp.eom

Bhaskar Bose

Indiana University

215 Lindley Hall

Bloomington, IN 47405

Danlele Bozzolo

Union Switch and Signal, Inc.

5800 Corporate Drive

Pittsburgh, PA 15237

Rlcky W. Butler

NASA Langley Research Ctr.

Mall Stop 130

Hampton, VA 23681-0001

emall: rwb@air 16.1arc.nasa.gov

Jim Caldwell

NASA Langley Research Center

Mail Stop 130

Hampton, VA 23681-0001
email: caldwell@cs.cornell.edu

Victor Carreno

NASA Langley Research Center

Mail Stop 130

Hampton, VA 23681-0001

email: vac@air 16.1arc.nasa.gov

Jerome F. Coffel

I toneywell, Inc.

3660 Technology Drive
MN65-3240

Minneapolis, MN 55418

emall: Jcoffel@src.honeywell.com

Richard Covington

NASA Jet Propulsion Laboratory
MS 125-233

4800 Oak Grove Drive

Pasadena, CA 91109

Dan Cralgen
ORA Canada

265 Carling Avenue
Suite 506

Ottawa, Ontario KIS 2E1
CANADA

email: dan@ora.on.ca

Ronald T. Crocker

Motorola, Inc.

1501 West Shure Drive

Arlington Heights, IL 60004
email: crocker@mot.com

Mark Crosland

Boeing
MS 88-12

P.O. Box 3707

Seattle, WA 98124

Jim Dabney

lntermetrics, Inc.
1100 tlercules

Suite 300

Houston, TX 77058

Mike DeWalt

FAA

ANM- 106N

1601 Lind Avenue, S.W.

Renton, WA 98055-4056

PRECEDqNG PA_ BLANK NOT RLME_

237

i

Ben DI Vito

Vigyan, Inc

NASA Langley Research Center

Mail Stop 130

Hampton, VA 23681-0001
email: bld@air 16.1arc.nasa.gov

Audrey Dorfman

Vitro Corporation

600 Maryland Ave., SW

Suite 300, West Wing

Washington, DC 20024

George FineUi

NASA Langley Research Center

Mail Stop 130

Hampton, VA 23681-0001

email: gbf@air 16.1arc.nasa.gov

Gene Fisher

California Polytechnic State Univ.

Dept. of Computer Science

San Luis Obispo, CA 93405

Scott French

IBM Corporation

3700 Bay Area Blvd.

Houston, TX 77058-1199

David Fura

Boeing Defense and Space Group
P.O. Box 3999

Seattle, WA 98124

Jane Gaby

Martin Marietta Energy Systems

MS 8203, Bldg. 9112
P.O. Box 2009

Oak Ridge, TN 37831-8203

Susan Gerhart

National Science Foundation

1800 G. Street, N.W.

Room 304

Washington, DC 20550

email: sgerhart@nsf.g0v

Holly Gibbons
Intermetrics, Inc.
I 100 Hercules

Suite 300

Houston, TX 77058

email: gibbons@inbox.hous.inmet.com

Allen Goldberg
Kestrel Institute

3260 llillrich Ave.

Palo Alto, CA 94304

email: goldgerg@kestrel.edu

David Goldschlag

National Security Agency

9800 Savage Road

M352 (D. Goldschlag)

Ft. Meade, MD 20755-6000

David Hamilton

IBM Corporation

3700 Bay Area Blvd.
Houston, TX 77058-1199

Charles Hardwick

University of Houston-CL

2700 Bay Area Blvd.
Houston, TX 77058

email: hardwick@cl.uh.edu

Rick Harper

C. S. Draper Laboratory

555 Technology Square

Cambridge, MA 02139

email: harper@draper.com

Paul Hayes

NASA Langley Research Center
MS 473

IIampton, VA 23681-0001

Connie Heitmeyer

Naval Research Laboratory
Code 5546

Washington, DC 20375

0

238

C. Michael Holloway

NASA Langley Research Ctr.

Hampton, VA
email: c.m.hoUoway@larc.nasa.gov

Michelle McElvany Hugue

Allied-Signal Aerospace Co.
Aerospace Technology Center

9140 Old Annapolis Road
MD 108

Columbia, MD 21045-1998

email: michelle@batc.allied.com

Warren Hunt

Computational Logic, Inc.
1717 West Sixth Street

Suite 290

Austin, TX 78703-4776

email: hunt@cli.com

Larry Hyatt

NASA Goddard Space Flight Center
Code 302

Greenbelt, MD 20771

Charles Hynes
Ames Research Center

Mail Stop 211-2

Moffett Field, CA 94035-1000

Ramu lyer
Motorola, Inc.

3701 Algonquin Road
Suite 601

Rolling Meadows, IL 60008
email: ramu@mot.com

Willliam Jackson

Martin Marietta Corporation
P.O. Box 179

MS 7330

Denver, CO 80201

John James

P.O. Box 7372

Fairfax Station, VA 22039-7372

Damlr Jamsek

Odyssey Research Associates, Inc.
301 Dates Drive

Ithaca, NY 14850

Jack Janelle

Honeywell, lnc.
21111Northl9thAve.

Phoen_,AZ 85027-!111

Jim Jenkins

NASA Headquarters
Code RJ

Washington, DC 20546

Sally Johnson

NASA Langley Research Ctr.

Mail Stop 130

Hampton, VA 23681-0001

email: scJ @air 16.1arc.nasa.gov

Steve Johnson

Indiana University

Computer Science Dept.

Bloomington, IN 47405

John Kel_

NASA JetPropulsionLaboratory
MS 125-233

4800 Oak Grove Drive

Pasadena, CA 91109-8099

Kathryn Kemp

NASA Headquarters

Code QT

Washington, DC 20546

John Knight

University of Virginia

Dept. of Computer Science
Charlottesville, VA 22903-2442

emall: knlght@virginla.edu

Robert Kovach

NASA Headquarters
Code DO

Washington, DC 20546

239

Larry Lacy

Rockwell lnternaUonal Corp.

Collins Flight Control
400 Collins Road NE

Cedar Rapids, IA 52498

Jay Lala _

C. S. Draper Laboratory, Inc,

555 Technology Square

Cambridge, MA 02139

emall: lala@draper.com

H. Grady Lee

Vitro Corporation

400 Virginia Ave., SW
Suite 825

Washington, DC 20024

Miriam Leeser

Cornell University

School of Electrical Engineering

Phillips Hall
Ithaca, NY 14853-5401

email: mel@ee.comell.edu

Nancy Leveson

University of California at Irvine

ICS Dept.
Orvome. CA 92717

Beth Levy

The Aerospace Corporation

Mail Station M 1/099

PO Box 92957

Los Angeles, CA 90009-2957

email: blevy@aero.org

Patrick Lincoln

SRI International

333 Ravenswood Ave.

Menlo Park, CA 94025

Charles W. Melssner, Jr.

NASA Langley Research Ctr,

Mail Stop 130

Hampton, VA 23681-0001

email: c.w.meissner@larc.nasa.gov

Sleven Miller

Rockwell InternaUonal

Collins Commercial Avionics

400 Collins Road NE

Cedar Rapids, IA 52498

Paul Miner

NASA Langley Research Ctr. -_

Mail Stop 130 _ _ -

Hampton, VA 23681-0001

email: psm@air 16.1arc.nasa.gov

John Munro

Martin Marietta Energy Systems, Inc.

Oak Ridge National Laboratory
P.O. Box 2008

Oak Ridge, TN 3783!;6008

Philip Newcomb

Boeing Computer Services
P.O. Box 24346

MS 7L-64

Seattle, WA 98124-0346

email: philu@atc.boelng.com

Stephen Nicoud

Boeing Computer Services
P.O. Box 24346

MS 7L-64

Seattle, WA 98124-0346

email: stephen@boeing.com

Eric Peterson

Honeywell, Inc.

Air Transport Systems Div.
Box 21111

Phoenix, AZ 85036-1111

Richard Platek

Odyssey Research Associates, Inc.
301A Dates Drive

Ithaca, NY 14850

Joseph Profeta

Union Switch and Signal, Inc.
5800 Corp0rate Drive

Pittsburgh, PA 15237

=_

zt

T

w:

240

Patricia Remacle

NASA Langley Research Center

Mail Stop 125A

Hampton, VA 23681-0001

Alice B. Robinson

NASA Headquarters

Code QR

Washington, DC 20546

John Rushby
SRI International

333 Ravenswood Ave.

Menlo Park, CA 94025

email: rushby@csl.srl.com

David Russinoff

Computational Logic, Inc.
1717 West Sixth Street

Suite 290

Austin, TX 78703-4776

email: russ@cli.com

Mark Saaltink

ORA Canada

265 Carling Ave., Suite 506

Ottawa, Ontario KIS 2E l
CANADA

email: mark@ora.on.ca

Peter Saraceni

FAA Technical Center

ACD-230, Bldg. 201

Atlantic City Airport, NJ 08405

Carl Schaefer

MITRE Corporation

Washington Software Engineering Center
7525 Colshire Drive

McLean, VA 22102-348 l

email: schaefer@mitre.org

Frank Schneider

Jet Propulsion Laboratory
4800 Oak Grove Drive

Pasadena, CA 91109-8099

Philllp Shaffer

GE Aircraft Engines

One Neumann Way
MD A320

Cincinnati, OH 45215-6301

shaffer@athena.crd.ge.com

K. S. (Doc} Shankar

IBM Corporation

3700 Bay Area Blvd.
Houston, TX 77058-1199

NataraJan Shankar
SR[International

333 Ravenswood Ave.

Menlo Park, CA 94025
email: shankar@csl.sri.com

Subash Shankar

Honeywell, Inc.
MN65-2100

3660 Technology Drive

Minneapolis, MN 55418

Greg Shea

Software Productivity Consortium
2214 Rock Hill Road

Hemdon, VA 22070

email: shea@software.org

Mandayam Srivas
SRI International

333 Ravenswood Ave.

Menlo Park, CA 94025

Richard Taylor

Atomic Energy Control Board
C.P. 1046, succursale B

270, rue Albert

Ottawa, Canada KIP 5S9

Susan Voigt

NASA Langley Research Center

Mail Stop 288

Hampton, VA 23681-0001

email: suev@csab.larc.nasa.gov

241

Chris Walter

Allied Signal Aerospace Company
Aerospace Technology Center
9140 Old Annapolis Road
MD 108

Columbia, MD 21045-1998

email: chris@batc.allled.com

Robert E. Waterman

NASA Goddard Space Fit. Center
Code 302

Bldg. 6, Rm. 5-229
Greenbelt, MD 20771

Isaiah White

Boeing Defense & Space Group
P.O. Box 3999, MS 8H-09

Seattle, WA 98124-2499

Lloyd Williams

Software Engineering Research

264 _dgevie_W:_e =_ - : _=:_'

Boulder, CO: 80302 "

Phil Wlndley

University of Idaho
computer ScienceDep_ent

Moscow, ID 83843'

emall: windley@cs.uidaho.edu

Robert Wyman
Lawrence Livermore National Lab.

P.O. Box 808

Livermore, CK g4550 [=

F

242

J
¥

REPORT DOCUMENTATION PAGE Fo,mApprovedOMB No. 0704-0188

t PudbN_o,_i_ I=_d_"Jo_r thb oo_le,_ion el i_om"mllon |. a4tln-_leJ ,; .v.,_ ! hO_l' _ .i$_Km., indu¢lli_ Ih_ time |or ,e_l_ _,uc_tol_, I_td_i_ .kmting _ Bourc4m,

0_tt_ _ maJnlgdn|ng the _ _,eoclod. m',_d ooml_ing and rovtev,4ng the ¢otlooll_ el inlo,rnatlon. 9Am¢l oommlnto re,_ding Ihil burden gltlmlte or Imy o11_1_ a_olmt o4 Ih_

ndedlon d Wc_m_Jon. bok_qeg mugg_flone _, nBduo_,/th_ I_den. w W_.hlngten H_u_lwe _wvk_e./)k_o,,_ k)¢ Worm_ta_ Ol_¢_k_m _ .q_. t215 Je_fenme Dm,_

HillhW_t. Sub 120_. A_g_e. VA gg_0_-4302, and to the Ofl_, o_ M,,,_pm_e,t and Budgee. Pq_w*od_ Redu_loe Pmj_ (0704 Ot_). WNhlngme. DC 2O6O3.

1. AOENCvuSE_'LV (L,,v,_,,,k_ =.R_'6_
November 1992

|,,

4. 11'rLEANO_JB111"LE

Second NASA Formal Methods Workshop 1992

3. REPORTTYPE AND DATESCOVIERED "Conference Publication

,,,, ,, ,,

s. AUTHOR(S)

Sally C. Johnson, C. Michael] h)lloway, and Ricky W. Butler, Compik'rs

7. PERFORMINGORGANIZATIONNAMF_S)ANDADDRESS(ESi

NASA Langley Research Center

Hampton, VA 23681-0001

S. SPONSORING / MONITORINO AGENCY NAME(Si A'ND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

8. FUNDING NUMBERS

WU 505-64-10-05

S. PERFORMINGORGANIZATION
REPORTNUMBER

10. SPONSORING1M_ITO_ING
AGENCY REPORTNUMBER

NASA CP-t0110

11. SUPPLEMENTARYNOTES

This workshop was chaired by Ricky W. Butler and Sally C. Johnson of NASA Langley Research Center.

lb. owrRisu'no__AV_U_BILITVm'*_%NT

Unclassified - Unlimited

Subject Category 61

12b. DISTRIBUTk_ CODE

15. ABSTRACT (Max_mum200 we,d=)

This report documents the Second NASA Langley Formal Methods Workshop held at the NASA Langley Reseamh Center,

August 11-13, 1992. The primary goal of the workshop was to bring together formal methods researchers and aerospace
industry engineers to investigate new opportunities for applying formal methods to aerospace problems. The first part of the
workshop was tutorial in nature. The second pad of the workshop explored the potential of formal methods to address

current aerospace design and verification problems. The third pad of the workshop involved on-line demonstrations of
state-of-the-art formal verification tools. Also a detailed survey was filled in by the attendees; the results of the survey are

compiled in this report.

14. SUBJECTTERMS

Formal methods; Digital flight control; Verification; Specification; Design proof

t?. SECURffY CLA_Fk_T_N
OF REPORT

Unclassified

NSN 7640-01-280-5500

18. SECURITYCLASSIFICATION
OF THIS PAGE

Unclassified

19/SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGER

243

_s. '_RCECODE
All

20. UMITATION OF ABSTRACT

StandardForm'2gS (Rev. 2-89)
I_m,¢_:l by AI_I Std. Z30- la

E

=

